SINGULAR®

ENGENHARIA, TECNOLOGIA E GESTAO

Publicagao: Outubro de 2019

Digital Object Identifier

Android Applications based on software

repository analysis

TAYSE VIRGULINO RIBI,EIRO1,
MARCIO LOPES CORNELIO?

1-Master of Science in Computer Science - Center of Informatic (CIn), Universidade Federal de Pernambuco - UFPE, Recife/PE - Brazil

(e-mail: tvr@cin.ufpe.br)

2- Assistant Professor Centro de Informdtica - Universidade Federal de Pernambuco PhD in Computer Science, Centro de Informdtica

(e-mail: mlc2 @cin.ufpe.br)

Autor Correspondente: Tayse Virgulino Ribeiro (e-mail: tvr @cin.ufpe.br).

Context: Software repositories have been a source for studies about software evolution and its relation to
software defects. In addition, the context of repositories have also been used for the purpose of analyzing
refactoring practiced by programmers throughout the development process. Objective: Our objective is
based on android projects stored in software repositories, to determine what types of transformations,
that is, which refactoring are used, seeking to relate them to quality and security factors. Method: This
research uses as an approach an exploratory study of a qualitative character, based on a systematic review
of the literature, which will be carried out between the period from 2015 to 2019, as well as application of
research and quality criteria regarding the work context. In addition, develop a case study with projects for
Android, relating refactoring quality criteria to non-aggregated projects in software repositories, glimpsing
comparative and resulting factors. Expected results: It is expected with this review an analysis and a
summary of existing literature on Code Quality in the process of Software Refactoring for Android projects.
Conclusions: The rescarch is guided by this approach in identifying the types of refactoring practiced and
extracting the related quality factors in the development process. We believe that our results will benefit in
the updating and summary of the literature in the context of refactoring, glimpsing comparative factors.

Software projects, Android projects, software refactoring, metrics quality repositories software.

Il. INTRODUCTION

The research related to Systematic Review of Lit-
erature (SRL) is necessary as software repositories
have been a source for studies that establish the re-
lationship between evolution activities on software
defects [1], which allow the measurement of contri-
butions from developers [2] in software projects. In
addition, repositories have also been used to analyze
refactoring practiced by programmers throughout
the development process [3]. In the case of mo-
bile platforms, in particular for Android systems,
applications have been analyzed with various static
analysis tools in order to determine, for example,
the excess permissions or potential bugs in different
versions [4].

Understanding how software is created and pre-
served is essential to define how to make it faster,

cheaper, and with higher quality. One way to get
valuable information about the development process
is to analyze existing projects: source code, how
the application has evolved over time, and attributes
such as security, failure, and size [4].

Different program understanding studies show
that programmers rely on good software documenta-
tion [5]. In addition to improving, standardizing the
quality of documentation and ensuring information
security.

Out, the problem of this research is focused on
identifying which refactoring are involved in the
development process to achieve the software quality
factor? Also, what refactoring are related to a spe-
cific quality model?

In addition, the work uses as an approach an
exploratory study of qualitative character, based on

Numero 1, 2019

SINGULAR®

ENGENHARIA, TECNOLOGIA E GESTAO

the accomplishment of a rapid systematic review of
the literature. As well, a case study with projects
for Android is carried out in the context of software
repositories, looking for applicability of quality cri-
teria.

This paper is organized as follows. In Section 2,
we introduce fundamental concepts about of soft-
ware repositories and software quality. In Section 3,
we describe the research method we adopt. In sec-
tion 4 and 5, we present results and considerations of
the exploratory study presented. Finally, in Section
6, we present out conclusions.

Il. CONCEPTUAL BACKGROUND AND
RELATED WORKS

This section presents the main concepts, theories
and research challenges directed at the systematic
review and the case study of this qualitative re-
search.

A. REFACTORING

Refactoring is the process of changing a software
system in such a way that it does not alter the ex-
ternal behavior of the code yet improves its internal
structure. It is a disciplined way to clean up code
that minimizes the chances of introducing bugs. In
essence when you refactor you are improving the
design of the code after it has been written [6].

"Improving the design after it has been written."
That’s an odd turn of phrase. In our current under-
standing of software development, we believe that
we design and then we code. A good design comes
first, and the coding comes second. Over time the
code will be modified, and the integrity of the sys-
tem, its structure according to that design, gradually
fades. The code slowly sinks from engineering to
hacking [6].

Refactoring is the opposite of this practice. With
refactoring you can take a bad design, chaos even,
and rework it into well-designed code. Each step is
simple, even simplistic. You move a field from one
class to another, pull some code out of a method to
make into its own method, and push some code up or
down a hierarchy. Yet the cumulative effect of these
small changes can radically improve the design. It
is the exact reverse of the normal notion of software
decay [6].

With refactoring you find the balance of work
changes. You find that design, rather than occurring
all up front, occurs continuously during develop-
ment. You learn from building the system how to
improve the design. The resulting interaction leads

Ndmero 1, 2019

to a program with a design that stays good as devel-
opment continues [6].

In 1992, Willian Opdyke’s thesis was the first
work in the context of refactoring. The focus of the
thesis was to automate the refactoring in a way that
preserved the behavior of a program. This thesis es-
tablishes a set of refactoring operations that support
the design, evolution and reuse of frameworks of
object-oriented applications [17].

Contextualizes the design of reusable software in
an especially difficult way [17]. In general, reusable
Software is the result of many design iterations.
These occur after the software has been reused and
the resulting changes affect not only the design but
also the design of other software that is using it.
Therefore, making the software easier to modify
facilitates subsequent design iterations and makes
the software more reusable [17].

It is generally addressed in Opdyke’s thesis that,
for some refactoring, one or more of its precon-
ditions are undecidable. I n this thesis he defines
23 primitive refactoring and shows three examples
of compound refactoring. For primitives, a set of
preconditions provides the notion of software be-
havior. The set of complex refactoring is defined
in detail: generalization of the inheritance hierar-
chy, specialization of the inheritance hierarchy and
use of aggregations to model relationships between
classes [17].

Finally, this thesis explores several operations for
applicability in the process of evolution and devel-
opment of object-oriented applications. As well, it
provides some conservative algorithms to determine
if a program satisfies these constraints and describes
how to use this design information to refactor a
program [17].

In 1999, Don Roberts in his doctoral thesis con-
tinues the work of Opdyke [17], adding postcondi-
tions and developing the first refactoring tool. In his
thesis, [18] provides:

[...] a new definition of refactoring that fo-
cuses on preconditions and postconditions
of refactorings rather than on program
transformation itself. Preconditions are
statements that a program must satisfy for
refactoring to be applied, and postcondi-
tions specify how the assertions are trans-
formed by refactoring. Post-conditions
can be used for a number of purposes:
to reduce the amount of analysis that
subsequent refactorings must perform, de-
rive preconditions for compound refactor-
ings, and calculate dependencies between

SINGULAR®

ENGENHARIA, TECNOLOGIA E GESTAO

refactorings.

In addition to examining techniques to aid refac-
toring, it presents the Refactoring Browser design, a
Smalltalk refactoring tool that is used by commer-
cial software developers and identifies the criteria
necessary for any refactoring tool to be successful
[18].

Thus, it redefines the refactorings proposed by
[17], dividing them into three groups: class refac-
toring, method refactoring, and variable refactoring
[19].

Refactoring, reuse e reality

Refactoring is an overhead activity [6]:

« Tools and technologies are available to allow
refactoring to be done quickly and relatively
painlessly

« Experiences reported by some object-oriented
programmers suggest that the overhead of
refactoring is more than compensated by re-
duced efforts and intervals in other phases of
program development.

o Although refactoring may seem a bit awkward
and an overhead item at first, as it becomes part
of a software development regimen, it stops
feeling like overhead and starts feeling like an
essential.

How does one safely refactor? There are several
options [6]:

o Trust your coding abilities.

o Trust that your compiler will catch errors that
you miss.

o Trust that your test suite will catch errors that
you and your compiler miss.

o Trust that code review will catch errors that
you, your compiler, and your test suite miss.

The real-world concerns regarding a reuse pro-
gram are similar to those related to refactoring [6].

o Technical staff may not understand what to
reuse or how to reuse it.

o Technical staff may not be motivated to apply
a reuse approach unless short-term benefits can
be achieved.

o Overhead, learning curve, and discovery cost
issues must be addressed for a reuse approach
to be successfully adopted.

o Adopting a reuse approach should not be dis-
ruptive to a project; there may be Strong pres-
sures to leverage existing assets or implemen-
tation albeit with legacy constraints. New im-
plementations should interwork or be back-
ward compatible with existing systems.

B. QUALITY OF SOFTWARE

1) Project of software: android

Android has grown to be the world’s most popu-
lar mobile platform with apps that are capable of
doing everything from checking sports scores to
purchasing stocks. In order to assist researchers and
developers in better understanding the development
process as well as the current state of the apps
themselves, we present a large dataset of analyzed
open-source Android applications and provide a
brief analysis of the data, demonstrating potential
usefulness [4].

Android has become an extremely popular mo-
bile platform, and Android apps are not immune
to the problems which have hindered traditional
software — especially security vulnerabilities, high
maintenance costs, and bugs. Understanding how
software is created and maintained is paramount in
determining how to produce it faster, cheaper, and
of higher quality. One way to gain valuable insight
into the development process is to examine existing
projects: source code, how the app has evolved over
time, and attributes such as its security, defects, and
size. App source code may be analyzed using static
analysis tools, providing data about the software’s
security risk level, possible defects, or even lack of
adherence to coding standards [4].

A dataset of Android applications with the results
of the static analysis tools we have created is an
important tool for understanding how Android ap-
plications are developed and maintained [4].

2) Software testing repositories: software bugs

Studying the evolution and understanding the struc-
ture of large legacy systems are two key issues in
software industry that are being tackled by academic
research. These problems are strongly coupled for
various reasons: (i) examining the structure of sub-
systems allows us to gain a better understanding
of the whole system evolution; (ii) the histories
of software entities can reveal hidden relationships
among them and (iii) analyzing several versions of
a system improves our understanding of it [7].

3) Repositories of software: excess permissions
According [8], one of the most important principles
of good computer security is the principle of least
privilege: A user should have no more access to data
and systems than is necessary for their task. Too
often, security problems result from users having
excessive privileges and excessive access to data.

In the area of software refactoring, some of the
related works are worth referencing:

Ndmero 1, 2019

SINGULAR®

ENGENHARIA, TECNOLOGIA E GESTAO

Firouzi [12] discusses automated refactoring
tools in Visual Studio, analyzing their effectiveness
with the success rate of the builds and version con-
trol system. This paper examines the actual impact
of using ReSharper tools on the results of test runs,
Builds and Version control commands to cvaluate
their impact using some features such as Quick-
fixes, Context actions, and Refactorings. In this
study, they investigate whether the above tools meet
the expectations. In order to obtain the necessary in-
formation, Firouzi used the Data Set Enriched Event
Flows provided by the MSR challenge in 2017. In
the pre-process phase an application was developed
that iterated all user zip files and all JSON files and
converted the dataset into a relational database, and
information stored in the SQL Server database.

It is a study focused on the Enhanced Events
Stream Dataset and the presented results may not
generalize well in other contexts, regardless of sta-
tistical justifications and significance calculations.
In addition, other factors may influence the results,
but due to the abstraction of the data set or not being
collected could not be investigated. The results sug-
gest that the automated refactoring tools of Visual
Studio, ReSharper, may not consider an overview of
the solutions [12].

In [13] software metrics are employed in the de-
velopment and maintenance of software to evaluate
different quality attributes, software design, test and
reengineering processes. In this case, the software
metrics used in relation to the project standards
went through an analysis process. According (o
Derezinska [13], they focused on "classical” design
patterns (DP, in short) applied to object-oriented
software. Different metrics are used in evaluating
the impact of the design pattern on selected quality
attributes, for example, software maintenance, flex-
ibility to change input, performance, susceptibility
to failure, among others. One of the quality models
of object-oriented software is QMOOQOD. Different
object-oriented features are associated with quan-
titative measures such as SIZE, NOC, DIT, DAM,
CBO, CAM, MOA, MFA, NOP, RFC, WMPC.

To automate the introduction of design patterns
in the existing code, a refactoring process was pro-
posed, this process is based on relevance metrics
that support the recommendation of standards. The
metrics were implemented in a prototype tool that
supports refactoring to design standards. The tool
extends the Eclipse environment and transforms
Java programs. The main contribution of the paper
is a new approach based on metrics for refactoring.
The approach can be used as a recommendation

Ndmero 1, 2019

presented to a user or can provide partial or fully au-
tomated refactoring. Preliminary experiments with
the prototype on the refactoring of Java programs to
design patterns have confirmed the profitability of
the approach [16].

In article [14] the effect of clone refactoring (CR)
on the size of unit test cases in object-oriented (OO)
software is evaluated empirically. In general, the
contributions of this paper are: (1) strong and posi-
tive correlation between the CR code and the reduc-
tion in the size of the unit test cases, (2) showed how
the code quality attributes related to the testability of
the classes are significantly improved when clones
are refactored (3) the size of unit test cases can be
significantly reduced when CR is applied, and (4)
complexity/size measures are commonly associated
with variations in the size of unit test cases when
compared to coupling. The selected source code
metrics address the size, complexity, and coupling
attributes.

In the methodology was collected data from
two open source Java software systems, ANT and
ARCHIVA, which were refactored in clones. As
reported by Badri [14], to quantify the size of
unit test cases, we used two test code metrics
already used in many previous empirical stud-
ies and the size of unit test cases. In addition,
the results were based on three different tech-
niques: single-exit cross-validation (LOOCYV), ten-
fold cross-validation (10FCV) and cross-project val-
idation (IPCV).

In this article [15] explores better understanding
of performance issues in mobile applications by fo-
cusing our study on iOS. We conducted an empirical
study of 225 performance problem reports on four
free software iOS applications written in the Swift
programming language to study common types of
performance problems. IOS applications are gen-
erally developed using the Model-View-Controller
(MVC) design pattern. The layers in the MVC help
to abstract the underlying device differences, such as
screen sizes, and simplify application development.
The study of problem reports found that inefficient
user interface design, memory problems, and inef-
ficient thread manipulation are the most common
types of performance problems. These four anti-
patterns were documented and a static analysis tool,
called iPerfDetector, was developed to detect these
patterns, evaluated in 11 applications in IOS.

In [16], it is discussed the importance of refactor-
ing in software engineering and the difficulties that
can be faced with the application of refactoring. In
addition to providing an overview of the refactoring

9

SINGULAR®

ENGENHARIA, TECNOLOGIA E GESTAO

process and discussing the critical components of
this practice. Quality metrics are used to discover
design flaws in software systems or measure the
quality of the code in specific ways. In the litera-
ture [16], "Bad Smells" is a term used to describe
common structural problems in the code that need
to be eliminated to make the code more sustainable.
To achieve this, an appropriate refactoring operation
needs to be performed. Examples of "Bad smells"
metrics: Duplicated code, Long method, Larg class,
and Long paramter list.

For the most part, the refactoring deals with the
static relationships between the properties of the
units in the source code. For small software sys-
tems, structure or design can be considered as an
aesthetic question. For a larger software design and
company design, they become much more important
because of their direct impact on cost. Therefore, a
higher quality project should be the goal and this
project needs continuous refinements to preserve
the initial quality against software evolution. We
briefly discuss the refactoring process and discuss
several examples of "Bad smell", design problems
that degrade software quality and proposed refactor-
ing solutions [16].

Four different types of very important tools for
successful refactoring have been listed: static anal-
ysis tools, visualization tools designed to support
refactoring, refactoring tools for performing the
refactoring process, and automated testing tools to
verify such refactoring operations. Refactoring actu-
ally preserve the behavior of the system. The place
of refactoring in industry and academia was ad-
dressed. In addition to highlighting that refactoring
is one of the main practices in agile development
processes, such as extreme programming [16].

lil. METHOD
In a different direction, this research aims to ex-
plore activities based on android projects stored in
software repositories, in search of which types of
refactorings are used in relation to quality factors
in the development and measurement of the code.
From this perspective analyze and summary the
existing literature, as well as conduct a case study
with Android projects, relating to refactoring quality
criteria in order to glimpse comparative factors. Our
research question is formulated as follows:

Based on android projects, what types of refactor-
ing are used, trying to relate them to quality factors?

From this, the research question of this work is
derived from the definition of the following ele-
ments:

10

o Context: projects for android

o Intervention: quality factors

o Result: types of refactorings

This study is based on a systematic review, ad-
dressing a qualitative exploratory case study. Figure
1 shows the flow of the methodological proposal that
this research will guide.

Search Inclusion Quality
strategy criteria assessment

Literature Data Data analysis
Review collection

Influencing SR Data refinement
factors practices

Fig. 1: Methodological flow of research

The research will comprise two phases, as shown
in Figure 1, Systematic review and Case study.

In the first stage we understand Systematic re-
view. First, in this process the Search strategy step
must be carried out, which will follow the basic
scope of definition of the search methods, construc-
tion of the search string and definition of the search
source. The initial proposal of the protocol is based
on a manual search in specific sources to obtain a
set of known articles that allow us to measure the
level of completeness of our research and help in the
construction of our search string that will be used in
the automatic search. This research aimed to analyze
periodic and events related to Code Refactoring, as
well as studies classified as Software Repositories of
Mining (MSR), with the help of the use of Springer,
IEEE and ACM databases.

Already in the automatic search we have as aid
the use of the search engine Scopus. After this
process of searching the engines, we be carried out
the process of selection of studies. Some inclusion
criteria can be performed to filter the most relevant
studies for the research.

In the strategy of the research, we still designated
some criteria to categorize the study. According to
Hulley [9], the inclusion and exclusion criteria are
based on a standard and necessary practice in the
elaboration of high-quality protocols. In addition,
characteristics of the target unit of analysis that
researchers will use to answer the study question.
While the exclusion criteria include eligible charac-
teristics that make them have a high chance of loss
of follow-up.

Ndmero 1, 2019

SINGULAR®

ENGENHARIA, TECNOLOGIA E GESTAO

For this research, the following inclusion criteria
will be assigned, taking into account that the re-
searchers seek to identify the maximum of applied
trends in code quality and software refactoring pro-
cess. The protocol of this research chose to include
studies written only in English, and not to differen-
tiate in profiles of students and professionals. With
regard to the publication time limit, publications
from 2011 up to the current year will be included.
The inclusion criteria of the studies are presented in
Table 1:

1lightgray
Tab. 1: Inclusion Criterion.
Criterion Tnclusion Criterion Description
[1] Tanguage of the article: English
CI2 Publish date Iimit: 2011 to 2019

€8] Primary studies that address the area of research knowledge
CI4__| Target population: software engineers. software developers, prog and related arcas of computing.

On the other hand, the studies that do not have a
focus on the area of computing and related or that do
not have relevance to the research will be excluded.
As well, studies without theoretical foundation and
that are not related to the research question. As well
as articles that were previously published the year
2011. The exclusion criteria for the retrieved studies
will be presented in Table 2.

1lightgray
Tab. 2: Exclusion Criterion.
Criterion Description of Exclusion Criterion
CE1 Articles with no theoretical basis and not related to the research question
CE2 Arlicles that are not focused on computing or that have no relevance
CE3 Articles before 2011
CE4 1 of the article: Portuguese.

In addition to these criteria, in this process a
quality evaluation is performed, that is, a list of
criteria necessary to meet the quality of the study.
Initially, to carry out this quality analysis, 6 criteria
were defined and evaluated according to a scale
composed of the following values:

o (0) when the criterion is not met;

o (1) when the criterion is implicit;

¢ (2) when the criterion is fully met;

The quality criteria (QC) will be listed below 3:

1lightgray
Tab. 3: Quality Criterion.

Criterion Description of Quality Criterion
CQl Is there a clear definition of the objectives of the study?
CQ2 Is there a clear definition of the study’s justifications?
CQ3 Is there a clear definition of the study research question?
CQ4 Is there a clear description of the context in which the research was carried out?
CQ5 Does the study provide clear and reliable results?
CQ6 Is the study relevant to research or professional practice?

The criteria presented in Table 3 are defined to
cvaluate and prove, regarding reliability, quality of
the selected studies and why they are required.

After the first step of systematic review, the case
study is initiated. This will comprise of the steps of

Ndmero 1, 2019

literature review, data collection and data analysis.
In the literature review stage, the studies recovered
from the systematic review stage will be analyzed
according to the main influencing factors of the
research, according to the research question. After-
wards, the data collection stage will be carried out
in order to be based on a source of evidence, such as
physical artifact analysis, in order to analyze tools,
instruments or technological devices. In this case,
with the objective of collecting information about
projects developed for Android relating to quality
criteria in code refactoring.

Finally, the data analysis step is performed, which
in turn comprises refining the collected data. But
also, it is worth mentioning that this step is executed
in a parallel way with the collection of data and
in a systematic way. In addition, it contributes to
conclusions drawn from the data, maintaining a
clear chain of evidence. According to [10], in this
process the data are codified; the coded material can
be combined with comments by the researcher; the
researcher uses this material to identify the first set
of hypotheses; an iterative approach is performed,
so that data collection and analysis are performed in
parallel; and a set of generalizations can be formu-
lated from the analysis performed. Finally, a report
is generated of the whole process, that is, the result
of what was analyzed in the study. The study report
is responsible for presenting the results obtained,
besides being the main source of information to
judge the quality of the study.

IV. THREATS TO VALIDATY
This section presents the set of possible threats, as
listed by Wohlin [11] for the study, as well as the
actions of controls in order to minimize them.

Listed as threats to internal validity we have:
Including only journals articles and events classified
by Mining Software Repositories (MSR) in one of
the search processes as belonging to software engi-
neering limits the possibility of generalizing the re-
sults to other forums in which refactoring technolo-
gies are published. Also limiting the selection of
articles in other search engines may interfere with a
more consistent result. This also introduces the risk
of lack of technologies and evaluations published
in conference proceedings, reports, workshops, etc.
However, since automatic search is performed in
a way that does not limit the type of publication
classification, other main journals in the area of
software engineering may be included in the review,
so it is necessary that this threat is limited.

In the article selection process, first, the search

11

SINGULAR®

ENGENHARIA, TECNOLOGIA E GESTAO

procedure used introduces a threat, since relevant
work may be missing for inclusion in the review.
Even if the research has lost its work, it should
not introduce any systematic bias towards the re-
sults. Secondly, the inclusion criterion is applied,
the abstracts of the selected studies are read. This
introduces a threat because the summary may not
necessarily reflect what is actually presented in the
articles.

Finally, as threats to external validity, the fol-
lowing are punctuated: Already in the process of
extracting the studies, a potential threat to validity
is the judgment used to include/exclude a study
and extract information from these included studies.
With this in mind, in order to limit this threat, a pilot
with the classification and inclusion, exclusion and
quality criteria can be carried out, and these can be
changed before use. In addition, the aspects used
for data extraction are derived from the research
question. These aspects are subject to variation. To
limit this threat, the studies were classified giving
the researchers the benefit of the doubt, ie, the stud-
ies were classified according to what is mentioned
in the articles.

After the systematic review, the case study is
started. Thus, during this stage, data collection and
analysis phases identified in the previous phase will
be performed. Inconsistent collection and analysis
of this information may interfere with the extraction
of the criteria from the case study phase. This is to
generate a report of refinement of the whole process
carried out based on the research question.

The threats to validity presented for the protocol
of this research are an outline for the study, since it is
a proposal, they may change during the application.

V. EXPECTED RESULTS

In this section the expected results related to the
development of this rescarch will be presented, in
order to discuss the stages of the study carried out
based on the steps of the methodology performed in
this work.

Based on the studies captured during the review
phase, these will be filtered based on the criteria
presented above, as presented in Tables 1, 2 and 3.
These criteria aim to extract studies with theoretical
basis and related to the research question. Therefore,
in this phase of systematic review, we hope to ex-
tract a summary of the studies related to refactor-
ings in the development process. As well, explore
specific quality factors for Android applications.

In addition, it is also expected with the case study
stage to present a relationship between the collected

12

studies, with the objective of collecting quality met-
rics on projects developed for Android. Finally,
the data analysis step is performed, which in turn
comprises refining the collected data. The accom-
plishment of this research comprises the analysis
of studies in the context of software refactoring. In
order to determine which types of transformations,
that is, which refactorings are used, trying to relate
them to quality and safety factors in the refactoring
process.

VI. CONCLUSIONS

We believe that this work can provide an identifi-
cation of the types of refactoring practiced when
developing for the mobile applications area. As
well, propose an extraction of the refactoring qual-
ity factors related to the development process. We
believe that our results will be positive regarding
the presentation of an update of the literature review
in the context of refactoring, glimpsing comparative
factors on the use of refactoring types in android
development environments.

In addition, it is expected that the proposal of
this work will serve as an input to support the re-
search developed for the context of code refactoring.
Therefore, we intend to contribute in a positive way
in updating the systematic review, seeking to extract
the quality metrics in the process of refactoring
android application code.

REFERENCES

[1] Jacek Ratzinger, Thomas Sigmund, and Harald C. Gall. On
the relation of refactorings and software defect prediction. In
Proceedings of the 2008 international working conference on
Mining software repositories (MSR ’08). ACM, New York,
NY, USA, 35-38. 2008.

[2] Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinel-
lis. Measuring developer contribution from software repository
data. In Proceedings of the 2008 international working confer-
ence on Mining software repositories (MSR 08). ACM, New
York, NY, USA, 129-132. 2008.

[3] Gustavo Soares et al. Analyzing Refactorings on Software
Repositories. Software Engineering (SBES), 2011 25th Brazil-
ian Symposium on Software Engineering. 2011.

[4] Daniel E. Krutz et al. A dataset of open-source Android
applications. In Proceedings of the 12th Working Conference
on Mining Software Repositories (MSR °15). IEEE Press,
Piscataway, NJ, USA, 522-525. 2015.

[5] Paul W. McBurney and Collin McMillan. Automatic Doc-
umentation Generation via Source Code Summarization of
Method Context. In Proceedings of the ICPC’14, June 2-3,
2014, Hyderabad, India.

[6] Martin Fowler, Kent Beck (Contributor), John Brant (Contrib-
utor), William Opdyke, don Roberts. Refactoring: Improving
the Design of Existing Code. Another stupid release 2002.

[71 Marco D’Ambros and Michele Lanza. Software Bugs and
Evolution: A Visual Approach to Uncover Their Relationship.
Proceedings of the Conference on Software Maintenance and
Reengineering (CSMR’06). 2006.

Ndmero 1, 2019

SINGULAR®

ENGENHARIA, TECNOLOGIA E GESTAO

[8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

(191

Larry Seltzer for Zero Day. Excess privilege makes compa-
nies and data insecure. ZDNet. October 22, 2013. Topic: Se-
curity. Link: https://www.zdnet.com/article/excess-privilege-
makes-companies-and-data-insecure/

Hulley SB, Cummings SR, Browner WS, Grady DG, Newman
TB. Designing Clinical Research. 3rd ed, Philadelphia, PA:
Lippincott Williams and Wilkins; 2007.

Robson C. Case Studies for Software Engineers. (2002) Real
World Research. Blackwell, (2nd edition).

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B.,
and Wesslén, A.. 2012. Experimentation in Software Engineer-
ing. Springer Publishing Company, Incorporated.

Firouzi, E., Sami, A. Visual Studio Automated Refactoring
Tool Should Improve Development Time, but ReSharper Led
to More Solution-Build Failures. MAINT 2019, Hangzhou,
China.

Derezifiska A. (2019) Metrics in Software Development and
Evolution with Design Patterns. In: Silhavy R. (eds) Soft-
ware Engineering and Algorithms in Intelligent Systems.
CSOC2018 2018. Advances in Intelligent Systems and Com-
puting, vol 763. Springer, Cham.

Badri, M., Badri, L., Hachemane, O., Ouellet, A. Measuring
the effect of clone refactoring on the size of unit test cases
in object-oriented software: an empirical study. Innovations in
Systems and Software Engineering. Springer-Verlag London
Ltd., part of Springer Nature 2019.

Afjehei, S.S., Chen, T-H. P., Tsantalis, N. iPerfDe-
tector:Characterizinganddetecting performanceanti-
patternsiniOSapplications. EmpiricalSoftwareEngineering.
SpringerScience+BusinessMedia, LLC,partofSpringerNature
2019.

Kaya, M., Conley. S., Othman, Z.S., Varol, A. Effective Soft-
ware Refactoring Process. 2018 6th International Symposium
on Digital Forensic and Security (ISDFS). Antalya, Turkey.
OPDYKE, William F. Refactoring object-oriented frame-
works. 1992.

ROBERTS, Donald Bradley; JOHNSON, Ralph. Practical
analysis for refactoring. University of Illinois at Urbana-
Champaign, 1999.

MINUZZI, Tiago da Silva. Ustory-Refactory: ferramenta de
refatoragao de requisitos aplicada em cartdes user stories (CRC
Cards). 2007.

TAYSE VIRGULINO RIBEIRO Pos-

sui graduagdo em Sistemas de Infor-
magéo pelo Centro Universitdrio Luter-
ano de Palmas (2018). Mestranda em
Ciéncia da Computacdo no Cln-UFPE,
na Area de Engenharia de Software.
Atualmente ¢ Gestora do setor de TIC
e Professora na Unibra - Centro Uni-
versitdrio Brasileiro. Tem experiéncia

na drea de Ciéncia da Computagdo,

com énfase em Engenharia de Software, atuando principalmente
nos seguintes temas: processos de desenvolvimento de software,
engenharia de software, informdtica na educacéio e interacdo
homem computador. Com pouco mais de 6 anos de experiéncia
no mercado, centraliza suas atividades na drea de Engenharia de
Software e afins (Lider de projetos, Scrum Master e Analista de
Sistemas).

Ndmero 1, 2019

MARCIO LOPES CORNELIO Pos-
sui graduacdo em Ciéncia da Com-
putacdo (Bacharelado) pela Univer-
sidade Federal da Paraiba (1996),
mestrado em Ciéncias da Computacio
pela Universidade Federal de Pernam-
buco (1998) e doutorado em Cién-
cia da Computagdo pela Universidade
Federal de Pernambuco (2004). Atual-
mente € professor adjunto da Univer-
sidade Federal de Pernambuco. Tem experiéncia na drea de
Ciéncia da Computacdo, com énfase em Engenharia de Software,
atuando principalmente nos seguintes temas: métodos formais,
refatoracdo e transformagdo de programas.

13

