RENATO ANTUNES MAGALHÃES

AVALIAÇÃO ENTRE O PROJETO DE FUNDAÇÃO RASA DIMENSIONADO E O EXECUTADO: ESTUDO DE CASO

RENATO ANTUNES MAGALHÃES

AVALIAÇÃO ENTRE O PROJETO DE FUNDAÇÃO RASA DIMENSIONADO E O EXECUTADO: ESTUDO DE CASO

Projeto de Pesquisa elaborado e apresentado como requisito para aprovação na disciplina Trabalho de Conclusão de Curso em Engenharia Civil pelo Centro Universitário Luterano de Palmas (CEULP/ULBRA).

Orientador: Msc. Edivaldo Alves dos Santos.

RENATO ANTUNES MAGALHÃES

AVALIAÇÃO ENTRE O PROJETO DE FUNDAÇÃO RASA DIMENSIONADO E O EXECUTADO: ESTUDO DE CASO

Projeto de Pesquisa elaborado e apresentado como requisito para aprovação na disciplina Trabalho de Conclusão de Curso em Engenharia Civil pelo Centro Universitário Luterano de Palmas (CEULP/ULBRA).

Orientador: Msc. Edivaldo Alves dos Santos.

Aprovado em 07 de novembro de 2016.

BANCA EXAMINADORA

Prof. M.Sc. Edivaldo Alves dos Santos. Centro Universitário Luterano de Palmas

Prof^a. Esp. Elizabeth Hernández Zubeldia Centro Universitário Luterano de Palmas

Prof. Esp. Flávio da Silva Ornelas.

Instituto Federal de Educação, Ciência e Tecnologia-IFTO

RESUMO

A análise do tipo de fundação a ser utilizado é uma das etapas mais complexas dentro

do projeto de uma edificação. A tomada de decisão do tipo adequado engloba estudos relativos

às características do solo, tais como a sua deformidade e resistência, sendo que essa escolha

deve ser compatível com a superestrutura, permitindo a perfeita acomodação dos componentes

estruturais e as cargas atuantes. No presente trabalho realiza-se um estudo comparativo entre

projetos de fundação rasa tipo sapata em um conjunto de sobrados geminados de padrão médio,

sendo que o projeto executado foi concebido sem a utilização do laudo de sondagem enquanto

o projeto proposto foi dimensionado mediante as informações adquiridas pela investigação

geotécnica. Os procedimentos adotados caracterizam com pesquisa de estudo de caso com

natureza qualitativa, sendo embasadas por meio de revisões bibliográficas, através de livros,

periódicos técnicos e normas da associação brasileira de normas técnicas (ABNT). Os métodos

de cálculos adotados seguem as indicações dos autores apresentados no referencial teórico e

atende as especificações das normas técnicas vigentes no Brasil que tratam o assunto. Sendo

definido como método de investigação o SPT e para fim de cálculo estrutural o método dos

momentos fletores. Com os resultados obtidos conclui-se que para o tipo de edificação

apresentada a utilização dos estudos geotécnicos mostrou-se viável economicamente, pois

permitiu a elaboração de projetos de fundação mais precisos, promovendo redução no consumo

de materiais, e consequentemente gerou uma economia maior ao custo necessário para obtenção

do laudo de sondagem.

Palavras-chave: Fundações rasas, investigação geotécnica, sapatas.

ABSTRACT

Analysis of which type of foundation is to be used is one of the most complex stages of

building design. Making the appropriate decision involves studies of the soil's characteristics,

such as its deformation and resistance: this choice should be compatible with the superstructure

and allow perfect accommodation of the structural components and active loads. This study

undertakes a comparative study of shallow foundation projects in a group of medium standard,

2 storey attached houses, and where the implemented project was designed without conducting

a survey, but was designed based on the information acquired from a geotechnical investigation.

The adopted procedures are shaped by qualitative case study research, informed by literature

reviews, books, technical journals and the standards of the Brazilian Association of Technical

Standards (ABNT). The adopted methods of calculations follow the suggestions of the authors

presented in the theoretical framework, and meet the specifications of the relevant technical

rules in force in Brazil. Defined as a method of investigation, the purpose of the SPT (Standard

Penetration Test) is the structural calculation of the bending moment. With the results obtained

it is concluded that, for the type of construction presented, the use of geotechnical studies

proved to be economically viable, as it allowed the development of a more accurate foundation

project, thus promoting a reduction in material consumption and, consequently, generating a

saving equivalent to the cost required to carry out a survey.

Keywords: shallow foundations; geotechnical investigation.

LISTAS DE EQUAÇÕES

Equação 1 - Terzaghi	20
Equação 2 - Coeficiente para cálculo de Terzaghi	20
Equação 3 - Terzaghi com coeficiente na fórmula	20
Equação 4 - Tensão resistente do solo pelo método de Alonso	23
Equação 5 - Recalque Total	24
Equação 6 - Recalque imediato	25
Equação 7 - Recalque pelo método de Burland e Burbidge	25
Equação 8 - Fator de segurança para o método de Burland e Burbidge	25
Equação 9 - Fator de segurança para o método de Burland e Burbidge $H>Z1$, $Z1=1,0$	26
Equação 10 - Determinação da área da sapata	30
Equação 11 - Determinação das dimensões da sapara quadrada	30
Equação 12 - Determinação da dimensão do lado A da sapara retangular	31
Equação 13 - Determinação da dimensão do lado B da sapara retangular	31
Equação 14 - Determinação da altura da sapata	32
Equação 15 - Momento fletor em A	33
Equação 16 - Momento fletor em B	34
Equação 17 – Verificação da resistência a compressão do concreto	35
Equação 18 – Verificação da tensão de punção	35
Equação 19 — Determinação do K6 para cálculo da taxa de aço	36
Equação 20 – Determinação da área de aço	36
Equação 21 – Determinação da área mínima de aço	36
Equação 22 – Determinação da altura da punção em A	41
Equação 23 – Determinação da altura da punção em B	41
Equação 24 – Determinação do número de barras	43
Equação 25 – Determinação do espaçamento do lado A	43
Fauação 26 – Determinação do espaçamento do lado B	43

LISTA DE FIGURAS

Figura 1: Gráfico para a estimativa para profundidade da sondagem SPT	17
Figura 2: Ilustração do ensaio SPT.	18
Figura 3: Laudo de Sondagem.	19
Figura 4: Superfície potencial de ruptura	21
Figura 5: Fatores de capacidade de carga.	21
Figura 6: Profundidade de influência da zona 1	26
Figura 7: Bloco de fundação.	28
Figura 8: Sapata	28
Figura 9: Sapata associada.	28
Figura 10: Radier	29
Figura 11: Sapata isolada com pilar quadrado.	31
Figura 12: Sapata isolada com pilar retangular.	31
Figura 13: Sapata isolada.	32
Figura 14: Sapata isolada rígida.	33
Figura 15: Aplicação dos esforços no triângulo da sapata.	33
Figura 16: seção resistente da atuação no momento na face do pilar	34
Figura 17: Detalhamento da seção.	35
Figura 18: Setorização das áreas de influência das sondagens.	45
Figura 19: Comparativo de consumo de materiais.	53
Figura 20: Planta de carga do projeto executado.	59
Figura 21: Laudo de Sondagem SP-01.	60
Figura 22: Laudo de Sondagem SP-02.	61
Figura 23: Locação das sapatas do projeto executado.	65
Figura 24: Projeto de vigas baldrame	66
Figura 25: Prancha 01/04 – Detalhamento de sapatas na escala 1:25	67
Figura 26: Prancha 02/04 – Detalhamento de sapatas na escala 1:25	68
Figura 27: Prancha 03/04 – Detalhamento de sapatas na escala 1:25	69
Figura 28: Prancha 04/04 – Locação das sapatas na escala 1:75	70

LISTA DE QUADROS

Quadro 1: Fatores de forma em relação a geometria da peça estrutural	22
Quadro 2: Fatores de capacidade de carga em função de Ø.	22
Quadro 3: Fator de segurança e coeficientes de minoração para fundações superficiais	23
Quadro 4: Coeficiente K3 e K6.	37
Ouadro 5: Tabela de ancoragem.	41

LISTA DE TABELAS

Tabela 1: Resumo planta de carga.	44
Tabela 2: Divisão das sapatas em relação aos setores de investigação do solo	45
Tabela 3: Comparativos entre as dimensões das sapatas projetadas e executadas	51
Tabela 4: Comparativo de consumo entre projeto executado e projeto proposto	52
Tabela 5: Orçamento sondagem a percussão SPT	54
Tabela 6: Orçamento materiais base Sinap Tocantins 08/2016	54
Tabela 7: Dimensionamento do projeto executado.	62
Tabela 8: Dimensionamento proposto: SP-01.	63
Tabela 9: Dimensionamento proposto: SP-02.	64

SUMÁRIO

1	IN	VTROI	DUÇÃO	11
	1.1	Obje	etivos	12
		1.1.1	Objetivo Geral	12
		1.1.2	Objetivos Específicos	12
	1.2	Justi	ficativa	12
2	R	EFERI	ENCIAL TEÓRICO	14
	2.1	Orig	em e formação dos solos	14
		2.1.1	Solos colapsíveis	14
	2.2	Inves	stigação Geotécnica	15
		2.2.1	Investigação SPT	15
	2.3	Capa	acidade de carga do solo para fundações rasas	19
		2.3.1	Modelo de Terzaghi	20
		2.3.2	Modelo de Alonso	23
		2.3.3	Coeficiente de segurança	23
		2.3.4	Recalque	24
		2.3.5	Métodos Burland e Burbidge (SPT)	25
		2.3.6	Recalque admissível	26
	2.4	Cara	acterização de fundação	27
		2.4.1	Fundações superficiais ou rasas	27
		2.4.2	Planta de carga	29
	2.5	Méto	odos de cálculos	29
		2.5.1	Sapata isolada	29
3	M	ETOD	OOLOGIA	39
	3.1	Plan	ta de carga	39
	3.2	Inves	stigação geotécnica	39
	3.3	Proje	eto Geotécnico	40
		3.3.1	Capacidade de carga	40
	3.4	Proje	eto Geométrico	40
		3.4.1	Determinação geométrica da fundação	40
		3.4.2	Alturas	40
	3.5	Proje	eto Estrutural	42
		3.5.1	Previsão de recalque	42

		3.5.2	Estrutura de concreto armado	42
		3.5.3	Armadura a flexão	42
		3.5.4	Determinação da bitola e espaçamento das barras	43
4	RI	ESUL	TADOS E DISCUSSÕES	44
	4.1	Plan	a de carga da obra residencial	44
	4.2	Inves	stigação geotécnica do terreno	44
	4.3		ensionamento geotécnico, geométrico e estrutural das estrutur	
	4.3			
	4.3 4.4	Dime		ras de fundação
	4.4	Dime	ensionamento geotécnico, geométrico e estrutural das estrutur	ras de fundação 51
5	4.4 4.5	Dime	ensionamento geotécnico, geométrico e estrutural das estrutural parativo entre os projetos	ras de fundação 51

1 INTRODUÇÃO

A engenharia civil consiste em um ramo de atuação que está em crescimento e modernização, no Brasil e no mundo. Dada essa importância, estudos avançados, com o intuito de melhorarem o desempenho do concreto e do desenvolvimento de estruturas mais resistentes e esbeltas, estão sendo criados pelos acadêmicos e profissionais da área, que além de contribuírem com melhorias, propiciam maior segurança e reduzem desperdícios nas obras.

A partir desse contexto, esta pesquisa tem o intuito de contribuir através de esboço literário, técnico, e de cálculo, na temática das fundações do tipo sapata rasa. Para tanto, dimensionou - se uma estrutura de fundação seguindo os padrões exigidos pelas normas técnicas vigentes, iniciando pela mecânica dos solos (investigação SPT) para, assim, ter conhecimentos, o mais próximo possível, das características do subsolo dessa fundação.

Como resultado desse estudo, haverá um projeto que possibilite economia e segurança do sistema estrutural, pois se buscará nele: evitar patologias como recalques e trincas nas paredes que podem ser causados pela falta de um bom dimensionamento. Este projeto resultado do dimensionamento referido: será confrontado com outro que já está em execução, na cidade de Palmas, com base em dimensionamentos seguindo as características do solo regional, sem o uso de uma investigação no local da obra, e sem, assim, o uso de um laudo de sondagem.

Essa ideia de confrontar dois projetos (um em execução com base nos critérios do solo da região e o outro gerado a partir da investigação SPT neste mesmo solo do projeto que está em execução) parte da problemática de que, como em tese empreendimentos menores são obras mais "simples", para a realização destas, muitos profissionais da engenharia são levados a não desenvolverem estudos completos para executá-las, tendo em vista os custos destes estudos e a presunção de que se pode realizar uma obra desta natureza a partir de um comparativo com obras já executadas na mesma região.

Porém, essa prática põe em risco a durabilidade e a qualidade da obra executada, até por que a tipologia do solo pode mudar de uma quadra para a outra, ou até mesmo de um lote para outro, tornando esse parâmetro geral de classificação regional do solo incompatível, quando comparado com uma pequena porção do solo.

Destaca-se que a fundação é uma das estruturas mais importantes de uma construção, se não a mais, pois é ela que dá sustento à obra como um todo. Assim, esta pesquisa de tema "avaliação entre o projeto de fundação rasa dimensionado e o executado: estudo de caso" tem por objetivo demonstrar a importância do uso adequado das ferramentas disponíveis para o dimensionamento das estruturas.

1.1 Objetivos

1.1.1 Objetivo Geral

Elaborar um projeto de fundação de uma obra residencial, de forma a estabelecer um comparativo com algum projeto já executado, levando-se em consideração a NBR 6122/2010 – Projeto e execução das fundações.

1.1.2 Objetivos Específicos

- ✓ Apresentar planta de carga da obra residencial;
- ✓ Obter laudo de sondagem do terreno;
- ✓ Dimensionar a fundação da estrutura, em estudo;
- ✓ Comparar projeto executado com o dimensionado;
- ✓ Apresentar um quantitativo de insumos;

1.2 Justificativa

A construção civil é um ramo muito importante à sociedade como um todo. E, de conhecimento geral, é o fato de que tal ramo ganhou muito espaço no mercado e está tornandose cada vez mais técnico e exigente. Desta forma, estudar a estrutura (fundação) que compõe a base principal de toda e qualquer obra é imprescindível.

Neste contexto, sabendo que uma fundação bem estruturada, realizada com base em estudos de normas, avaliação de laudos de sondagem, dentre outros, é primordial para que a obra, como um todo, tenha maior durabilidade e, consequentemente, qualidade. Por isso, criar um projeto bem estruturado/dimensionado e estabelecer com ele um comparativo com um já executado que se deu somente a partir de dados gerais do solo da região: é fundamental para verificar a importância de desenvolver um projeto que atenda a todos os requisitos técnicos necessários.

Além do mais, vê-se que obras de menor porte, apresentam um maior risco de os profissionais do ramo da engenharia não fazerem todos os procedimentos necessários, e agirem estabelecendo comparativos com obras anteriores realizadas na mesma região. Entretanto, seguir todos os procedimentos é importante, e é o que foi provado com o projeto de pesquisa.

Nesse sentido, a norma de fundações NBR 6122/2010, que normatiza todo o dimensionamento da fundação, destaca ainda mais a importância de se executar um projeto de fundação bem calculado, pois o mesmo consiste na sustentação de todo o empreendimento, e assim, gera a estabilidade e segurança para estrutura como um todo.

Verifica-se também que, se uma obra, por menor que seja, for realizada sem obedecer aos requisitos mencionados, ela corre o risco de ser superdimensionada, fazendo com que os custos da mesma sejam maiores do que o necessário, bem como corre o risco de ser subdimensionada e, dessa maneira, contribuir para que a obra venha a sofrer recalque e/ou outros problemas estruturais.

2 REFERENCIAL TEÓRICO

2.1 Origem e formação dos solos

No ponto de vista da engenharia civil o estudo do solo tem como objetivo, segundo Pinto (2006, p. 63) o poder de estimar o provável comportamento do solo ou, pelo menos, orientar o programa de investigação necessário para permitir a adequada análise de um problema.

O solo consiste em um recurso natural formado através da degradação da rocha-mãe, decorrente de um processo erosivo causado pela chuva e pelo vento, sendo eles os responsáveis por desagrega-la. Neste sentido a ABNT (NBR 6502) completa a definição de solos ressaltando que é um "Material proveniente da decomposição das rochas pela ação de agentes físicos ou químicos, podendo ou não ter matéria orgânica."

2.1.1 Solos colapsíveis

São chamados colapsíveis os solos que, quando submetidos a um determinado tipo de carregamento, como ocorre em obras da construção civil, e umedecidos por infiltração de água de chuva, vazamentos em rede de água e de esgoto ou ascensão do lençol freático sofrem uma espécie de colapso da sua estrutura. Este processo consiste em um tipo de recalque chamado de "colapso" e o solo classificado como "colapsível". Para Mackechnie (1989, apud CINTRA, 1998, p. 9) o colapso "ocorre como resultado de um acréscimo no teor de umidade e, por isso, há expulsão de água".

Tem-se ainda, solos naturais que atendendo a dois critérios podem se tornar colapsíveis, são eles: uma estrutura porosa, que possui um alto índice de vazios; e a condição não saturada, representada por um baixo teor de umidade. Onde, a estrutura porosa pode estar associada a presença de um agente cimentado que, aliado a uma sucção suficientemente elevada, estabiliza o solo na condição parcialmente saturada, conferindo-lhe uma resistência "aparente" ou temporária (CINTRA, 1998).

Os solos colapsíveis necessitam de um alto teor de umidade e de uma tensão excessiva para, de fato, entrarem em colapso. Em outras palavras Cintra (1998, p. 10) explica que:

O solo colapsível apresenta uma estrutura instável, porém com uma rigidez temporária mantida pela pressão de sucção e/ou cimentação. Esse estado resistente é instável diante do aumento do teor de umidade, pois quando este ultrapassa um limite crítico sobrevém o colapso, desde que a carga atuante também esteja acima de um certo limite. Portanto, os solos susceptíveis ao colapso apresentam uma grande

sensibilidade à ação da água; o aumento do teor de umidade é o mecanismo detonador ou o efeito gatilho do colapso.

Apresenta-se também que os colapsos do solo podem ocasionar notáveis trincas e fissuras nas alvenarias das construções, podendo causar inclusive sérios danos e comprometimentos estruturais na edificação e sua posterior interdição.

2.2 Investigação Geotécnica

Os maiores riscos que envolvem as obras de engenharia estão relacionados com problemas oriundos do subsolo, devido às incertezas que o homem tem perante à ação da natureza. Isto pode afetar a qualidade no desempenho de toda a estruturas das edificações que tem como principal critério o comportamento da fundação, quando houver recalque nelas. Assim, para atingir um nível satisfatório, o engenheiro projetista de fundação deve primeiramente verificar a tipologia do solo no projeto geotécnico. Caputo (1988, p. 6) já defendia que "Um dos maiores riscos que se pode correr no campo de Engenharia de Construções é iniciar uma obra sem um conhecimento tão perfeito quanto possível do terreno (rocha ou solo) de fundação".

A obtenção dos dados para os projetos geotécnicos de qualquer natureza, normalmente são executados tendo como base os ensaios de campo, cujo os resultados permitem uma definição satisfatória da estratigrafia do subsolo e uma estimativa aproximada da realidade das propriedades dos materiais. A obtenção desta informação se faz necessária para os projetos de fundação, estabilidade de talude, estruturas de contenção, dimensionamento de pavimentos e infraestrutura hídrica (SCHNAID, 2000).

Com os resultados obtidos na investigação do terreno, o engenheiro de fundações avaliará e decidirá qual tipologia de estrutura será utilizada na fundação, seja ela de elementos raso ou profundos.

2.2.1 Investigação SPT

Na engenharia civil, o método mais utilizado para exploração do subsolo é Standard Penetration Test" (SPT) que também é reconhecido por sondagem a percussão ou de simples reconhecimento. O SPT é o principal método aplicado no Brasil e em boa parte do mundo, no Brasil ele foi normatizado pela Associação Brasileira de Normas Técnicas (ABNT) na NBR 6484/2001 Solo - Sondagens de simples reconhecimentos com SPT - Método de ensaio.

Para Schnaid (2000, p. 9) o ensaio SPT "é reconhecidamente a mais popular, rotineira e econômica ferramenta de investigação em praticamente todo o mundo, permitindo uma indicação da densidade de solos granulares, também aplicado à identificação da consistência de solos coesivos e mesmo de rochas brandas". E Veloso e Lopes (2002, p. 57) completa ressaltando que "O ensaio SPT tem uma primeira utilidade na indicação da compacidade de solos granulares (areias e siltes arenosos) e da consistência de solos argilosos (argilas e siltes argilosos)".

Com a sondagem pode-se determinar, também, as condições da água subterrânea, perfurando o terreno com o trado até que se encontre água, determinando assim o nível d'agua freático (VELOSO; LOPES, 2002, p. 46)

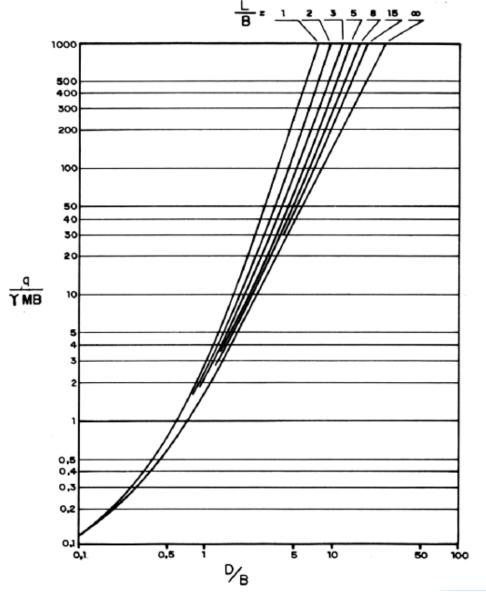
O equipamento para realização da investigação SPT consiste em um tripé com altura aproximada de 5 metros e um conjunto roldanas e cordas para o manuseio da haste com a força manual. Schnaid (2000, p. 9) explica que o ensaio deve ser realizado da seguinte forma:

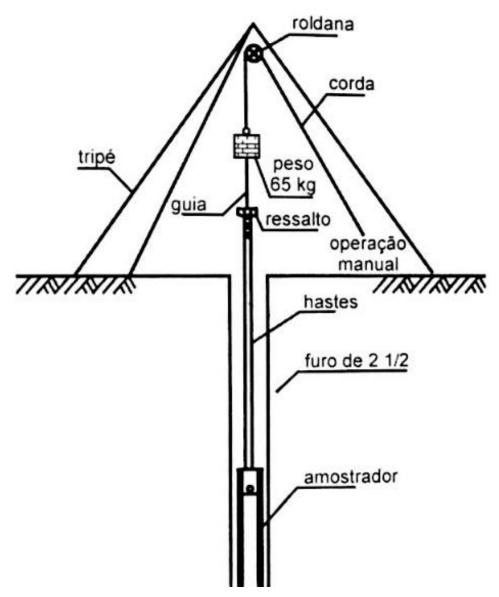
Amostras representativas do solo são coletadas a cada metro de profundidade por meio de amostrador - padrão, de diâmetro externo de 50 mm. O procedimento de ensaio consiste na cravação deste amostrador no fundo de uma escavação (revestida ou não), usando um peso de 65,0 kg, caindo de uma altura de 750 mm. O valor N_{spt} é o número de golpes necessário para fazer o amostrador penetrar 300 mm, após uma cravação inicial de 150 mm.

A NBR 8036/1983 determina que em qualquer circunstância o número mínimo de sondagens deve ser de: dois furos para uma área de projeção de até 200 m², de três furos para área entre 200 e 400 m², para áreas de até 1200 m² deve fazer um furo a cada 200 m², entre 1200 a 2400 m² faz-se um furo a cada 400 m² que aceder dos 1200 m² e acima de 2400 m² o número de sondagens deve ser fixado de acordo com o plano particular da construção.

A normativa NBR 8036/1983 ainda destaca que:

As sondagens devem ser levadas até a profundidade onde o solo não seja mais significativamente solicitado pelas cargas estruturais, fixando-se como critério aquela profundidade onde o acréscimo de pressão no solo, devida às cargas estruturais aplicadas, for menor do que 10% da pressão geostática efetiva. Como guia para estimativa da profundidade, neste critério, pode ser usado o gráfico da Figura.




Figura 1: Gráfico para a estimativa para profundidade da sondagem SPT.

Fonte: NBR 8036/1983.

Onde:

- ✓ q = pressão média sobre o terreno (peso do edifício dividido pela área em planta)
- \checkmark γ = peso específico médio estimado para os solos ao longo da profundidade em questão
- ✓ M = 0,1 = coeficiente decorrente às cargas estruturais aplicadas, for menor do que 10%
 da pressão geostática efetiva;
- ✓ B = menor dimensão do retângulo circunscrito à planta da edificação
- ✓ L = maior dimensão do retângulo circunscrito à planta da edificação
- ✓ D = profundidade da sondagem

Figura 2: Ilustração do ensaio SPT.

Fonte: Schnaid, 2000.

Segundo Schnaid (2000, p. 10) "As vantagens deste ensaio com relação aos demais são: simplicidade do equipamento, baixo custo e obtenção de um valor numérico de ensaios que pode ser relacionado com regras empíricas de projeto".

Com os dados obtidos na sondagem, forma-se o laudo, o qual deverá conter o layout das sondagens de forma a demonstrar, segundo Quaresma et. al. (1998, p. 121) "todas as camadas ou horizontes de solos encontrados, as posições dos níveis de água, o número de golpes N necessários à cravação dos 30 últimos centímetros do amostrador e demais informações úteis que forem observadas".

PERFIL INDIVIDUAL DE SONDAGEM A PERCUSSÃO SP 03 últimos 30 cm SPT INTER GEOL DESCRIÇÃO DO MATERIAL NÚMERO DE GOLPES e N.A. PENETRAÇÕES Concreto 00 Areia média a grossa, argilosa, fofa, com entulho, cinza escuro 1,25 2 3 01 Argila arenosa, mole, cinza a verm 15 15 Areia média, argilosa, fofa, vermelha 02 15 /15 3 3,45 0.3 2 4,45 15 / 15 5,45 05 06 6.45 15 15 5 10 Formação Residente 07 16 กล 8,90 09 10 15 11,45 10/ 20 10/ /15 15 10/ 15 19/ 16/ 15 15 15 15 OBS: 45 cm Ensaio de lavagem por tempo Medidas dos níveis d'água Ν.: 3.45 m: Início: 26/10/2006 Trado: Hora N.A. Rev. Data E.: Lavagem: 23,45 m 27/10/2006 3,10 Fim: 28/10/2006 Revestimento: 6.00 m: Cota: 27/10/2006 3,10 28/10/2006 7:15 1,25 Interessado: ICON ENGENHARIA LTDA. Local: Av. 23 de Maio, 1220 - São Paulo - SP Relatório: 332/03 ONDAGEN Data: 28/10/2006 Geólogo Responsável/CREA Desenho Nº Rua 7 de Setembro, 2641 Paulo Ferreira da Silva 188777/8 Esc. vert.:

Figura 3: Laudo de Sondagem.

Fonte: Rebello, 2008.

2.3 Capacidade de carga do solo para fundações rasas

Na construção civil, a estrutura em si, é dividida em infraestrutura e superestrutura. Dentre a infraestrutura está englobada a estrutura de fundação que tem como objetivo suportar as cargas oriundas de toda a edificação. Com isso, deve-se realizar um estudo minucioso do solo e a carga que este suporta, de acordo com a tipologia da fundação. Neste sentido, Das (2007, p. 488) ressalta que "A sobrecarga excessiva pode resultar em recalque excessivo ou ruptura por cisalhamento no solo, o que danifica a estrutura".

2.3.1 Modelo de Terzaghi

A teoria da capacidade de carga fundamentada por Terzaghi teve início em 1942 combinando com a teoria da plasticidade, por Prandtl e Reisner, com o cálculo de empuxos passivos a partir de curvas de ruptura pré-estabelecidas. A aplicação desta teoria é voltara para sapatas rasas corridas e segundo Das (2013, p. 532) "uma fundação pode ser definida como rasa se a profundidade D_f for menor ou igual á sua largura B".

Terzaghi (1943, apud VELLOSO E LOPES, 2002, P. 76) apresenta que, para as fundações rasas corridas, pode-se:

Desprezar a resistência ao cisalhamento do solo acima do nível da base da fundação, substituindo-o por uma sobrecarga $q = \gamma D$. Com isso, o problema passa a ser de uma faixa (sapata corrida) de largura 2b, carregada uniformemente, localizada na superfície horizontal de um maciço semi-infinito.

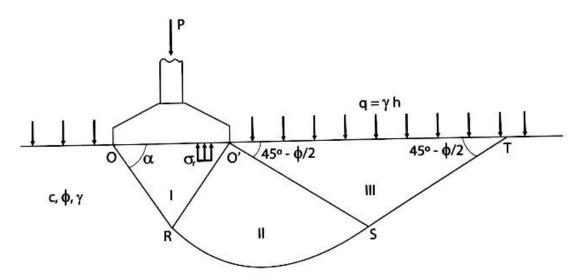
Vargas (1977, p. 434), ressalta que "a formula de Terzaghi só pode ser aplicada com confiança para fundações rasas (aquelas em que a profundidade Df é da mesma ordem de grandeza da largura 2B da sapata)".

Segundo Cintra, Aoki e Albiero (2011, p. 31) "o valor aproximado da capacidade de carga para ruptura por puncionamento (originalmente denominada ruptura local por Terzaghi) é dado pela equação":

$$\sigma'_r = c^* x \, N'_c x \, S_c + q \, x \, N'_q x \, S_q + \frac{1}{2} x \, \gamma \, x \, B \, x \, N'_\gamma x \, S_\gamma \tag{Eq. 01}$$

$$c^* = \frac{2}{3} \times C$$
 (Eq. 02)

Logo:


$$\sigma'_r = \frac{2}{3} x C x N'_c x S_c + q x N'_q x S_q + \frac{1}{2} x \gamma x B x N'_{\gamma} x S_{\gamma}$$
 (Eq. 03)

Onde:

- \checkmark c = coesão do solo (KPa);
- ✓ y = o peso especifico do solo de apoio da fundação (KPa);
- ✓ B = menor largura da sapata (m);
- ✓ q = pressão efetiva do solo na cota de apoio da fundação (KPa);
- ✓ N_c ; $N_{\gamma}x N_q$ = fatores de carga (Figura 05)

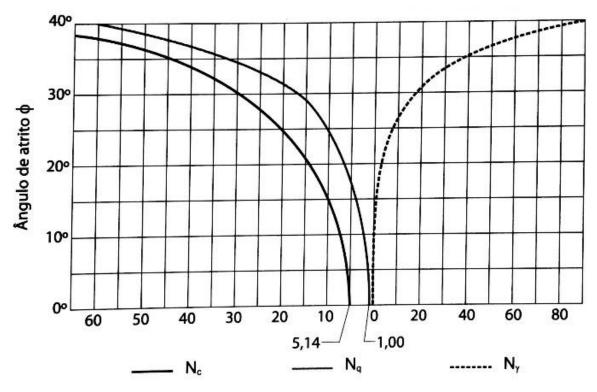

✓ S_c ; $S_{\gamma}x S_q = \text{os fatores de forma (Quadro 01)}$.

Figura 4: Superfície potencial de ruptura

Fonte: Cintra; Aoki e Albiero, 2011.

Figura 5: Fatores de capacidade de carga

Fonte: Cintra; Aoki e Albiero, 2011.

Quadro 1: Fatores de forma em relação a geometria da peça estrutural.

Sapata	Sc	S_q	Sγ	
Corrida (lado B)	1	1	1	
Quadrada (B = L)	1,2	1	0,8	
Circular (B = diâmetro)	1,2	1	0,6	

Fonte: Cintra; Aoki e Albiero, 2011.

Quadro 2: Fatores de capacidade de carga em função de Ø.

þ°	Nc	Nq	Nγ	N _q /N _c	tg φ	φ°	Nc	Nq	Nγ	N _q /N _c	
0	5,14	1,00	0,00	0,20	0,00	26	22,25	11,85	12,54	0,53	
1	5,38	1,09	0,07	0,20	0,02	27	23,94	13,20	14,47	0,55	
2	5,63	1,20	0,15	0,21	0,03	28	25,80	14,72	16,72	0,57	
3	5,90	1,31	0,24	0,22	0,05	29	27,86	16,44	19,34	0,59	_
4	6,19	1,43	0,34	0,23	0,07	30	30,14	18,40	22,40	0,61	
5	6,49	1,57	0,45	0,24	0,09	31	32,67	20,63	25,99	0,63	_
6	6,81	1,72	0,57	0,25	0,11	32	35,49	23,18	30,22	0,65	_
7	7,16	1,88	0,71	0,26	0,12	33	38,64	26,09	35,19	0,68	_
8	7,53	2,06	0,86	0,27	0,14	34	42,16	29,44	41,06	0,70	
9	7,92	2,25	1,03	0,28	0,16	35	46,12	33,30	48,03	0,72	_
10	8,35	2,47	1,22	0,30	0,18	36	50,59	37,75	56,31	0,75	_
11	8,80	2,71	1,44	0,31	0,19	37	55,63	42,92	66,19	0,77	_
12	9,28	2,97	1,69	0,32	0,21	38	61,35	48,93	78,03	0,80	_
13	9,81	3,26	1,97	0,33	0,23	39	67,87	55,96	92,25	0,82	
14	10,37	3,59	2,29	0,35	0,25	40	75,31	64,20	109,41	0,85	
15	10,98	3,94	2,65	0,36	0,27	41	83,86	73,90	130,22	0,88	
16	11,63	4,34	3,06	0,37	0,29	42	93,71	85,38	155,55	0,91	_
17	12,34	4,77	3,53	0,39	0,31	43	105,11	99,02	186,54	0,94	
18	13,10	5,26	4,07	0,40	0,32	44	118,37	115,31	224,64	0,97	_
19	13,93	5,80	4,68	0,42	0,34	45	133,88	134,88	271,76	1,01	_
20	14,83	6,40	5,39	0,43	0,36	46	152,10	158,51	330,35	1,04	_
21	15,82	7,07	6,20	0,45	0,38	47	173,64	187,21	403,67	1,08	
22	16,88	7,82	7,13	0,46	0,40	48	199,26	222,31	496,01	1,12	-
23	18,05	8,66	8,20	0,48	0,42	49	229,93	265,51	613,16	1,15	_
24	19,32	9,60	9,44	0,50	0,45	50	266,89	319,07	762,89	1,20	_
25	20,72	10,66	10,88	0,51	0,47	•					-

Fonte: Cintra; Aoki e Albiero, 2011.

2.3.2 Modelo de Alonso

Segundo Alonso (1983, p. 99) a tensão admissível do solo pode ser definida com base no SPT médio, na profundida de ordem de grandeza igual duas vezes a largura estimada para a fundação, contando a partir da cota de apoio. Este modelo é válido para valores de SPT ≤ 20.

$$\sigma_{s = \frac{SPT \, (m \in dio)}{50}} \quad (MPa) \tag{Eq. 04}$$

2.3.3 Coeficiente de segurança

O coeficiente de segurança ou fator de segurança consiste em um valor considerado nos cálculos, na fase de projeto, com o objetivo de garantir a segurança da estrutura, seja minorando a resistência do solo ou estrutura; ou majorando a carga que será aplicada; pode-se dizer também que é uma relação entre o limite de carga de trabalho especificado e a carga de ruptura mínima efetiva. Neste contexto, Velloso e Lopes (2002, p. 19) ressalta que:

O solo que participa do comportamento de uma fundação é, na maioria das vezes, extremamente heterogêneo e seu conhecimento é restrito ao revelado pelas investigações realizadas em alguns pontos do terreno e que não impedem a ocorrência de surpresas, seja durante a execução das fundações, seja depois da construção concluída.

Assim, pode-se verificar a relevância tanto da investigação geológica, como da consideração do fator de segurança. A investigação dará uma base do material encontrado e o fator de segurança garantirá possíveis equívocos nas sondagens. A união destes dois pontos chegará a uma obra segura e sem desperdícios (SCHINAID, 2000).

Quadro 3: Fator de segurança e coeficientes de minoração para fundações superficiais.

Métodos para determinação da resistência última	Coeficiente de minoração da resistência última	Fator de segurança global Valores propostos no próprio processo e no mínimo 3,00		
Semi-empíricos ^a	Valores propostos no próprio processo e no mínimo 2,15			
Analíticos b	2,15	3,00		
Semi-empíricos a ou analíticos ^b acrescidos de duas ou mais provas de carga, necessariamente executadas na fase de projeto, conforme 7.3.1	1,40	2,00		

Atendendo ao domínio de validade para o terreno local.

b Sem aplicação de coeficientes de minoração aos parâmetros de resistência do terreno.

Fonte: NBR 6122, (2010).

2.3.4 Recalque

O recalque para a engenharia civil consiste no rebaixamento do solo após a aplicação de cargas verticais na superfície ou em profundidades próximas a superfície. Segundo Cintra, Aoki e Albiero (2011, p. 62) "os recalques são provenientes das deformações por diminuição de volume e/ou mudança de forma do maciço de solo compreendido entre a base da sapata e o indeslocável". Neste sentido ainda, Pinto (2006, p. 183) esclarece explicando que "O comportamento dos solos perante os carregamentos depende da sua constituição e do estado em que ele se encontra, e pode ser expresso por parâmetros obtidos em ensaios ou através de correlações estabelecidas entre esses parâmetros e as diversas classificações".

As deformações do solo podem ser de dois tipos:

- ✓ **Imediatas:** ocorrem logo após a aplicação de carga e/ou construção, também indicadas pela expressão w_i , estas acontecem em solos arenosos e argilosos não saturados;
- Com o tempo ou lentas: são as deformações que surgem lentamente com o passar do tempo, após aplicação das cargas, essas são indicadas por w_t , surgindo em solos argilosos saturados provocando o recalque com a saída da agua (PINTO, 2006).

Assim, o recalque total ou final é definido pela equação:

$$w_f = w_i + w_t \tag{Eq. 05}$$

"Em solos de drenagem rápida (areias ou solos argilosos parcialmente saturados), w_f ocorre relativamente rápido, pois não há praticamente geração de excessos de poro pressão com o carregamento" (VELLOSO E LOPES, 2002). Alonso (1991, p. 82) complementa o conceito de Velloso e Lopes dizendo que "Os solos granulares de alta permeabilidade (pedregulhos, areias, siltes arenoso) têm comportamento independente do grau de saturação e, portanto, para esses solos, estando ou não saturados, o recalque total é o próprio recalque imediato".

Os recalques imediatos são provocados, nas fundações diretas, devido as deformações a volume constante, não havendo a redução de vazios. Eles ocorrem contrariamente ao adensamento e em tempo muito curto, sendo simultâneo à aplicação do carregamento, em condições não drenadas (CINTRA; AOKI; ALBIERO, 2011).

A base do cálculo do recalque imediato é pela teoria da Elasticidade Linear e por isso é também chamado de recalque elástico. Assim, Simons e Menzies (1981, p. 40) define que:

A teoria da matemática da elasticidade fornece ao engenheiro deslocamentos e diagramas de tensões causadas por carga, atuando em áreas planas flexíveis e rígidas

de várias formas geométricas, tanto sobre ou em superfícies horizontais de sólidos elásticos em camadas ou semi-infinitos de grande extensão lateral.

Para Cintra, Aoki e Albiero (2003) o recalque imediato pode ser definido pela equação:

$$\rho_i = \sigma x B x \left[\frac{1 - v^2}{E_S} \right] x I_\rho \tag{Eq. 06}$$

Onde:

- $\checkmark v \Rightarrow$ Coeficiente de Poisson do solo
- ✓ I_{ρ} => Fator de influência, que depende da forma e da rigidez da sapata.
- ✓ B => Largura da base ou diâmetro da sapata.
- ✓ E_s => Módulo de deformabilidade.
- \checkmark σ => Tensão média na superfície de contato da base da sapata com o topo do solo argiloso.

2.3.5 Métodos Burland e Burbidge (SPT)

Segundo Burland e Burbidge (1985 *apud* VELLOSO; LOPES, 2002, p. 138), "o recalque de fundações em areias pode ser estimado a partir do SPT com":

$$w = q x B^{0,7} x \frac{1,71}{N^{1,4}} x fs x f1$$
 (Eq. 07)

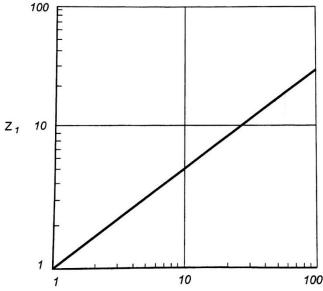
Onde:

- ✓ w = Recalque (mm);
- \checkmark q = Pressão aplicada (kN/m²);
- ✓ B = Menor dimensão da fundação (m);
- ✓ N = Média do número de golpes no SPT na profundidade de influência Z_I ;
- ✓ f_s = Fator de forma, dado por:

$$f_S = \left(\frac{1,25x_{\overline{B}}^L}{\frac{L}{B} + 0,25}\right)$$
 (Eq. 08)

Onde:

✓ L = Maior dimensão da fundação (m);


 f_1 = Fator de espessura compressível (H), dado por:

$$f_s = \frac{H}{Z_1} x \left(2 - \frac{H}{Z_1} \right)$$
 (Eq. 09)

Sendo que para $H > Z_1, Z_1 = 1,0$

A profundidade de influência Z₁ é dada pelo ábaco a seguir:

Figura 6: Profundidade de influência da zona 1.

Fonte – Velloso e Lopes, 2002.

2.3.6 Recalque admissível

A determinação do recalque admissível deve ser cautelosamente avaliando, pois, a ocorrência de recalque gera uma nova distribuição dos esforções na superestrutura, alterando a carga aplicada em cada ponto da fundação, constituindo a interação solo-estrutura. Em outras palavras, Teixeira e Godoy (1996, apud CINTRA, AOKI E ALBIERO, 2011, p. 90) completa a afirmação:

Teoricamente, uma estrutura que sofresse recalques uniformes não sofreria danos, mesmo para valores exagerados do recalque total. Na prática, no entanto, a ocorrência de recalque uniforme não acontece, havendo sempre recalques diferenciais decorrentes de algum tipo de excentricidade de carga, ou heterogeneidade do solo. A limitação do recalque total é uma das maneiras de limitar o recalque diferencial.

Teixeira e Godoy (1996, apud CINTRA, AOKI E ALBIERO, 2011, p. 90) ainda ressalta que "é importante saber distinguir os casos rotineiros daqueles que requerem uma análise mais criteriosa do problema de recalques (edifícios altos com corpos de alturas diferentes, vãos

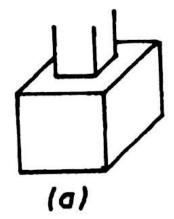
grandes, vigas de grande inércia, acabamentos especiais e etc.)". Esses exemplos citados, não admitem grandes recalques por se tratarem obras com elementos criteriosos.

Assim, para garantir o desempenho das estruturas comuns, como as dos edifícios de escritório, residenciais e industriais, o recalque diferencial entre pilares deve ser cerca de 20 mm. Esse recalque nunca excederá se a maior sapata recalcar até 25 mm, mesmo se apoiada na parte mais compressível do deposito de areia (TERZAGHI; PECK, 1967 *apud* CINTRA; AOKI; ALBIERO, 2011, p. 91).

2.4 Caracterização de fundação

Segundo Moraes (1976, p. 5) "projetar uma estrutura significa estudar a associação de seus elementos e prepara-los para suportar os diferentes esforços a que estarão submetidos". Assim, para a escolha da estrutura de fundação que mais se adequa ao projeto, deve-se levar em consideração o tipo e/ou tamanho da edificação e o solo que ela será apoiada (HACHICH et. al., 1998).

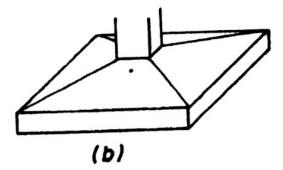
Velloso e Lopes (2004, p. 11) ressalta que "um dos primeiros cuidados de um projetista de fundação deve ser o emprego da terminologia correta". Essa terminologia está dividida, convencionalmente, em dois grandes grupos, sendo o primeiro o de fundações superficiais ou diretas ou rasas; e o segundo de fundações profundas.


2.4.1 Fundações superficiais ou rasas

A NBR 6122 (2010) conceitua fundações superficiais como um elemento "em que a carga é transmitida ao terreno pelas tensões distribuídas sob a base da fundação, e a profundidade de assentamento em relação ao terreno adjacente à fundação é inferior a duas vezes a menor dimensão da fundação".

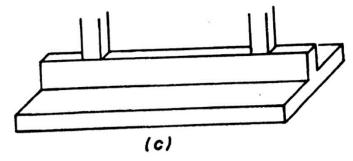
Conforme Hachich et al. (1998) as fundações superficiais estão compreendidas nos seguintes elementos principais: bloco, sapata, sapata associada e radier.

✓ **Bloco**: elemento de fundação de concreto simples, dimensionado de maneira que as tensões de tração nele produzidas possam ser resistidas pelo concreto, sem necessidade de armadura.


Figura 7: Bloco de fundação.

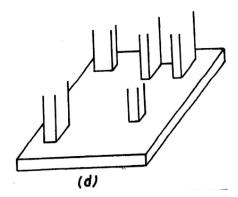
Fonte - Hachich at. al., 1998.

✓ **Sapata:** elemento de fundação de concreto armado, de altura menor que o bloco, utilizando armadura para resistir aos esforços de tração.


Figura 8: Sapata.

Fonte - Hachich at. al., 1998.

✓ Sapata associada: elemento de fundação que comum a mais de um pilar, ocorre devido à proximidade dos pilares.


Figura 9: Sapata associada.

Fonte - Hachich at. al., 1998.

✓ Radier: elemento de fundação que recebe todos os pilares da obra. Podendo ser confundido como uma laje invertida.

Figura 10: Radier.

Fonte - Hachich at. al., 1998.

2.4.2 Planta de carga

A planta de carga, é de extrema relevância para que a fundação possa vir a ser definida e, posteriormente empregada, isso tendo em vista que a mesma consiste em um esquema de dados que o projetista de estruturas deverá fornecer ao projetista de fundações. Tal fato é necessário para a escolha da fundação que melhor se adeque a obra, haja vista que esta escolha exige uma complexidade em razão da grande importância que a fundação tem para o sustento e manutenção do empreendimento como um todo.

Em razão disso, para que tenha início o dimensionamento do projeto de fundação, há uma interação entre os dois projetistas já mencionados, de modo que: o projetista de fundações precisa receber do projetista estrutural a chamada planta de carga, a qual deverá conter as dimensões e localizações dos pilares, bem como uma planilha com as cargas máximas (normais, verticais e momentos) que cada pilar estará sujeito (CARVALHO; PINHEIRO, 2009).

2.5 Métodos de cálculos

2.5.1 Sapata isolada

2.5.1.1 Geometria da fundação

Segundo Hachich at. al. (1998, p. 228) "o dimensionamento geométrico de fundação diretas e seu posicionamento em planta é a primeira etapa de um projeto, a ser feito para uma

tensão admissível σ, previamente estimada". Sendo as dimensões definidas de forma encontrar uma proporção que leva a um dimensionamento econômico.

Para Carvalho e Pinheiro (2009, p. 461) "as dimensões da sapata são encontradas inicialmente através da verificação das tensões no solo, que não devem ultrapassar o valor admissível (σ_{solo}), encontrado em ensaio de caracterização". Assim, ao aplicar a fórmula, a seguir, será encontrada a área da sapata necessária para suportar a carga do pilar, esta proveniente da estrutura.

$$A_{sapata} = \frac{1,1P}{\sigma_{solo}}$$
 (Eq. 10)

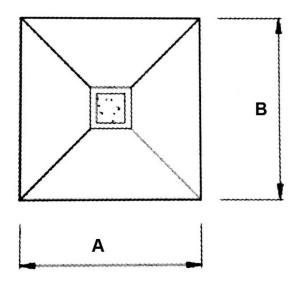
Onde:

 \checkmark P = carga do pilar (kN);

 $\checkmark \sigma_{solo}$ = tensão admissível do solo (kN/m²).

Rabello (2008) afirma que para obter um dimensionamento econômico, a relação entre as dimensões do pilar e a base da sapada devem ser respeitados, conforme formulas expressas a seguir:

✓ Sapata isolada que recebe pilar quadrado;


$$A = B = \sqrt{A_{sapata}}$$
 (Eq. 11)

Onde:

✓ A = Maior dimensão da sapata em metros;

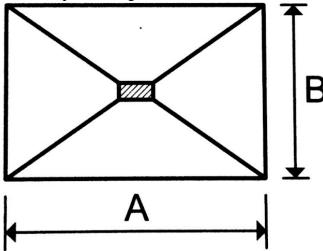
✓ B = Menor dimensão da sapata em metros;

Figura 11: Sapata isolada com pilar quadrado.

Fonte: Carvalho e pinheiro, 2009.

✓ Sapata isolada que recebe pilar retangular:

$$A = \frac{(a-b)}{2} + \sqrt{\frac{(a-b)^2}{4} + A_{sapata}}$$
 (Eq. 12)


$$B = \frac{A_{sapata}}{A}$$
 (Eq. 13)

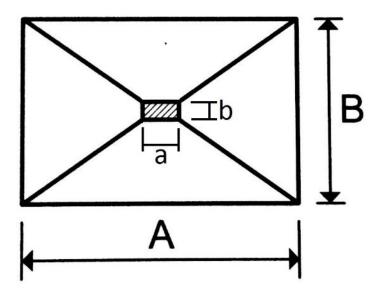
Onde:

✓ a = Maior dimensão do pilar em metros;

✓ b = Menor dimensão do pilar em metros.

Figura 12: Sapata isolada com pilar retangular.

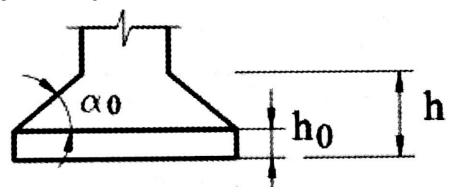
Fonte: Araújo, 2014.


Carvalho e Pinheiro (2009, p. 461), em acordo com a NRB 6118/2014, apresenta os parâmetros necessários para classificar a sapata quanto a sua rigidez. Para ser classificada como uma estrutura rígida, a formula/critério abaixo deverá ser atendido; caso contrário será classificada como flexível.

$$h \ge \frac{(A-a)}{3} \text{ ou } h \ge \frac{(B-b)}{3}$$
 (Eq. 14)

Onde:

- ✓ h = Altura da sapata (m);
- ✓ A e B = Dimensões da sapata (m);
- \checkmark a e b = Dimensões do pilar (m);


Figura 13: Sapata isolada.

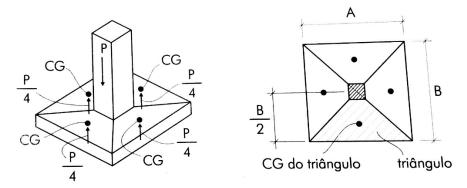
Fonte: Araújo, 2014.

De acordo com Carvalho e Pinheiro (2009, p. 462) a altura da sapata deve ser tal de modo que ela seja rígida, e em geral, adotar $\alpha_0 = 30^{\circ}$ consiste em uma boa solução. Já para h_0 o autor recomenta um valor mínimo de 10 cm.

Figura 14: Sapata isolada rígida.

Fonte: Carvalho e Pinheiro, 2009.

2.5.1.2 Método Estado Limite Último


Nas palavras de Rabello (2008, p. 156):

A reação do solo, que é igual a tensão aplicada pela sapata ao solo, é a responsável pela flexão da sapata.

É fácil perceber que a resultante da reação do solo é igual a carga P aplicada pelo pilar. Como, para efeito de cálculo do momento, a sapata é considerada dividida em 4 triângulos, fica também claro que cada triângulo reage com $\frac{1}{4}$ da carga P e que essa reação é aplicada no centro de gravidade de cada triângulo.

As figuras a seguir podem detalhar a explicação que o autor, acima citado, apresentou.

Figura 15: Aplicação dos esforços no triângulo da sapata.

Fonte: Rabello, 2008.

Diante disso, o auto apresenta as fórmulas para cálculo do momento fletor da força $^{P}/_{4}$ em relação a face do pilar, na direção A e B. Ainda explica que quando se tratar de pilar e sapata quadrados, os momentos serão iguais.

$$M_{//A} = \frac{1.1P}{4} \chi(\frac{B}{3} - \frac{b}{2})$$
 (Eq. 15)

$$M_{//B} = \frac{1,1P}{4} \chi(\frac{B}{3} - \frac{b}{2})$$
 (Eq. 16)

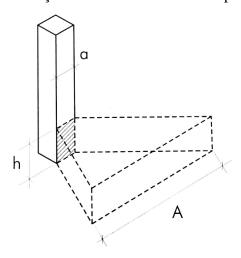
Onde:

✓ M_{//A} = Momento paralelo na dimensão A (maior dimensão) da sapata (kN.m);

✓ M_{//B} = Momento paralelo na dimensão B (menor dimensão) da sapata (kN.m);

✓ A = Maior dimensão da sapata (m);

✓ a = Maior dimensão do pilar (m);


✓ B = Menor dimensão da sapata (m);

✓ b = Menor dimensão do pilar (m);

2.5.1.3 Cálculo da armação da sapata pelo momento fletor

Ainda segundo Rebello (2008, p. 158) "o momento fletor calculado é o máximo e atua na face do pilar", conforme figura abaixo.

Figura 16: seção resistente da atuação no momento na face do pilar.

Fonte: Rebello, 2008.

Sendo:

 \checkmark a = Largura do pilar (m);

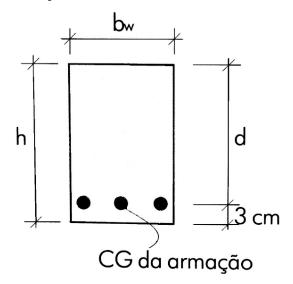
 \checkmark h = Altura da sapata (m).

Antes de dimensionar a quantidade de aço necessária para suportar os esforços de tração, deve-se verificar a possibilidade de ruptura a compressão no concreto. Vale ressaltar que o

rompimento da estrutura no concreto não se pode prever, o colapso é imediato; o contrário ocorre quando o rompimento é no aço, pois antes de vir a colapso a estrutura apresente trincas que denunciam a possibilidade de irregularidade (REBELLO, 2008). As fórmulas a seguir são para verificação da resistência ou não do concreto.

$$C = \frac{M}{b_w x d^2} < C_{lim} = 0.14 fck$$
 (Eq. 17)

Onde:


✓ M = Momento fletor atuante (kN.m);

✓ b_w = Largura da base (m);

✓ d = Altura útil da seção (d = h - 3 cm);

✓ fck = Resistência característica do concreto estipulado no projeto (Mpa).

Figura 17: Detalhamento da seção.

Fonte: Rebello, 2008.

$$\tau = \frac{1.1P}{2h(a+b+2xh)} < \tau_{lim} = \frac{fck}{25}$$
 (Eq. 18)

Onde:

 \checkmark *P* = Carga do pilar (kgf);

 \checkmark h = Altura da sapata (cm);

✓ a = Maior dimensão do pilar (cm);

✓ b = Menor dimensão do pilar (cm).

A quantidade de aço necessária para combater os momentos fletores atuantes na sapata, pode ser encontrado a partir da determinação dos coeficientes K6 e K3. Na sequência, primeiro encontra-se o K6 e com o resultado da equação, acha o K3 no quadro 04, esses dados possibilitaram determinar a quantidade de aço necessária (BOTELHO; MARCHETTI, 2004).

$$K_6 = \frac{Lpxd^2}{M}$$
 (Eq. 19)

Onde:

✓ Lp = Lado do pilar (a ou b, em cm);

✓ d = distância da borda mais comprimida ao centro de gravidade da armadura (cm);

✓ M = Momento (tf.cm).

$$As = \frac{k_3 x M}{d}$$
 (Eq. 20)

Onde:

✓ $A_s = \text{Área de aço (cm}^2);$

✓ M = Momento (tf.cm).

Bastos (2012), aconselha que não se deve utilizar taxas de aço inferior ao determinado pela seguinte equação:

$$A_{s,min} = 0.05\% x b_w x d$$
 (Eq. 21)

Onde:

✓ $A_{s,min} = \text{Área de aço mínima (cm}^2);$

✓ b_w = Largura da base (cm);

✓ d = Altura útil da seção (cm).

Quadro 4: Coeficiente K3 e K6.

				K 3								
				CLASS	E DO CO	NCRET	O (fck)			TIPO DE AÇO		
ļ						l	· ·			(f _y		
	kx	15 MPa	20 MPa	25 Mpa	30 MPa		40 MPa		50 MPa	CA 50	CA 60	
	0,03	772,51	582,29	463,51	386,25	331,08	289,69	257,50	231,75	0,325	0,271	
	0,04	517,62	390,17	310,57	258,81	221,84	194,11	172,54	155,29	0,327	0,272	
	0,05	390,20	294,12	234,12	195,10	167,23	146,32	130,07	117,29	0,329	0,274	
	0,06	313,76	236,50	188,25	156,88	134,47	117,66	104,59	94,13	0,330	0,275	
	0,08	262,81	198,10	157,69	131,41	112,63	98,55	87,60	78,84	0,332	0,277	
	0,09	226,44	170,68	135,86	113,22	97,04	84,91	75,48	67,93	0,334	0,278	
	0,10	199,16	150,12	119,50	99,58	85,36	74,69	66,39	59,75	0,335	0,280	
DO	0,11	177,96	134,14	106,78	88,98	76,27	66,74	59,32	53,39	0,337	0,281	
MÍ	0,13	161,01	121,36	96,60	80,50	69,00	60,38	53,67	48,30	0,339	0,282	
DOMÍNIO	0,14	147,14	110,91	88,29	73,57	63,06	55,18	49,05	44,14	0,341	0,284	
2	0,15	135,60	102,21	81,36	67,80	58,11	50,85	45,20	40,68	0,343	0,285	
	0,16	125,84	94,85	75,50	62,92	53,93	47,19	41,95	37,75	0,344	0,287	
	0,18	117,48	88,55	70,49	58,74	50,35	44,05	39,16	35,24	0,346	0,289	
	0,19	110,24	83,09	66,14	55,12	47,25	41,34	36,75	33,07	0,348	0,290	
	0,20	103,91	78,32	62,35	51,96	44,53	38,97	34,64	31,17	0,350	0,292	
	0,21	98,33	74,12	59,00	49,17	42,14	36,87	32,78	29,50	0,352	0,293	
	0,23	93,38	40,39	56,03	46,69	40,02	35,02	31,13	28,01	0,354	0,295	
	0,24	88,95	67,05	53,37	44,48	38,12	33,36	29,65	26,69	0,356	0,297	
	0,25	84,98	64,05	50,99	42,49	36,42	31,87	28,33	25,49	0,358	0,298	
	0,26	81,38	61,34	48,83	40,69	34,88	30,52	27,13	24,41	0,360	0,300	
	0,28	78,12	58,88	46,87	39,06	33,48	29,29	26,04	23,44	0,362	0,301	
	0,29	75,14	56,64	45,09	37,57	32,20	28,18	25,05	22,54	0,364	0,303	
	0,30	72,42	54,59	43,45	36,21	31,04	27,16	24,14	21,73	0,366	0,305	
	0,31	69,92	52,71	41,95	34,96	29,97	26,22	23,31	20,98	0,368	0,307	
	0,33	67,62	50,97	40,57	33,81	28,98	25,36	22,54	20,29	0,370	0,308	
	0,34	65,49	49,37	39,30	32,75	28,07	24,56	21,83	19,65	0,372	0,310	
DC	0,35	63,52	47,88	38,11	31,76	27,22	23,82	21,17	19,06	0,374	0,312	
DOMÍNIO	0,36	61,69	46,50	37,01	30,84	26,44	23,13	20,56	18,51	0,377	0,314	
)IN	0,38	59,98	45,21	35,99	29,99	25,71	22,49	19,99	17,99	0,379	0,316	
3	0,39	58,39	44,01	35,03	29,20	25,02	21,90	19,46	17,52	0,381	0,318	
	0,40	56,90	42,89	34,14	28,45	24,39	21,34	18,97	17,07	0,383	0,319	
	0,41	55,51	41,84	33,31	27,75	23,79	20,82	18,50	16,65	0,386	0,321	
	0,43	54,20	40,86	32,52	27,10	23,23	20,33	18,07	16,26	0,388	0,323	
	0,44	52,97	39,93	31,78	26,49	22,70	19,86	17,66	15,89	0,390	0,325	
	0,45	51,81	39,06	31,09	25,91	22,21	19,43	17,27	15,54	0,393		
	0,46	50,72	38,23	30,43	25,36	21,74	19,02	16,91	15,22	0,395		
	0,48	49,69	37,46	29,82	24,85	21,30	18,64	16,56	14,91	0,398		
	0,49	48,72	36,72	29,23	24,36	20,88	18,27	16,24	14,62	0,400		

0,50	47,80	36,03	28,68	23,90	20,49	17,92	15,93	14,34	0,403
0,51	46,93	35,37	28,16	23,46	20,11	17,60	15,64	14,08	0,405
0,53	46,10	34,75	27,66	23,05	19,76	17,29	15,37	13,83	0,408
0,54	45,31	34,16	27,19	22,66	19,42	16,99	15,10	13,59	0,410
0,55	44,57	33,59	26,74	22,28	19,10	16,71	14,86	13,37	0,413
0,56	43,86	33,06	26,32	21,93	18,80	16,45	14,62	13,16	0,415
0,58	43,18	3,55	25,91	21,59	18,51	16,19	14,39	12,96	0,418
0,59	42,54	32,07	25,52	21,27	18,23	15,95	14,18	12,76	0,421
0,60	41,93	31,60	25,16	20,96	17,97	15,72	13,98	12,58	0,424
0,61	41,35	31,16	24,81	20,67	17,72	15,50	13,78	12,40	0,426
0,63	40,79	30,75	24,47	20,39	17,48	15,30	13,60	12,24	0,429

Fonte: Araujo (2015).

3 METODOLOGIA

A metodologia de pesquisa descreve a forma como foi realizado a pesquisa, demonstrando os procedimentos específicos que serão trabalhados durante este processo. Ainda complementa Costa (2001, p. 4) que a metodologia "consiste em estudar e avaliar os vários métodos disponíveis, identificando suas limitações ou não no âmbito das suas implicações de suas aplicações".

A presente pesquisa apresenta uma metodologia descritiva, quantitativa e qualitativa onde o conteúdo em análise passa por uma seleção técnico-científica com a finalidade de obter conhecimento para solucionar a problemática inicialmente apresentada. Em seguida, foi feito um estudo de caso, no qual realizou-se uma comparação entre dois projetos de fundação, sendo um realizado sem laudo de sondagem e outro dimensionado a partir do laudo em referência, com a finalidade de avaliar a viabilidade e relação custo x benefício da utilização de investigação geotécnica.

O objeto de estudo deste trabalho, consiste em um sobrado de padrão médio, projetado com 4 unidades geminadas. O empreendimento está situado na quadra 605 sul, alameda 07, lote 33, QI 16 no plano diretor sul, Palmas – TO. O projeto estrutural e de fundações foi dimensionado e está sendo executado por uma empresa fundada e domiciliada no município, atuante no ramo da construção civil há 10 anos.

3.1 Planta de carga

A planta de carga que demonstra a locação dos pilares e seus respectivos carregamentos, necessária para a realização do dimensionamento, assim como o projeto estrutural do empreendimento em estudo, foi fornecida pela empresa responsável por sua elaboração.

3.2 Investigação geotécnica

Foi realizada a sondagem no terreno afim de identificar a tipologia do subsolo, por uma empresa especializada no ramo de investigação geotécnica, no município de Palmas - TO, tendo como base a norma NBR 8036:1983 - Programação de sondagens de simples reconhecimento dos solos para fundação de edifícios, que fixa as condições exigíveis na programação das sondagens de simples reconhecimento dos solos destinada à elaboração de projetos geotécnicos

para construção de edifícios. A norma citada, descrimina a quantidade de furos, localização dentro do terreno e a profundidade das sondagens.

Através da investigação realizada, também conhecida como ensaio SPT (Standart Penetration Test) ou sondagem de simples reconhecimento do solo, gerou como produto final um laudo técnico de sondagem que discrimina o tipo de solo existente no terreno, a profundidade do nível de água e a resistência a penetração. O laudo foi constituído por duas sondagens (SP-01 e SP-02), ao invés de três, como recomenda a norma, por se tratar de uma obra já iniciada, onde foi possível coletar informações apenas em dois pontos. Em posse do laudo de sondagem, com base nos dados extraídos do ensaio, foi possível realizar o dimensionamento das estruturas de fundação da edificação.

3.3 Projeto Geotécnico

3.3.1 Capacidade de carga

A estrutura de fundação tem como principal objetivo receber as cargas oriundas da superestrutura e retransmiti - las ao solo, de forma a não sobrecarrega - lo. A investigação geotécnica, por meio do laudo de sondagem, possibilitou a determinação da tensão admissível do solo e, com isso, fixar a cota de assentamento da fundação que suporte as cargas sem que haja recalque e/ou colapso. Essa tensão admissível foi determinada a partir da equação 04.

3.4 Projeto Geométrico

3.4.1 Determinação geométrica da fundação

Para determinar a geometria do elemento de fundação, primeiramente verificou-se a área da base necessária para suportar os esforços, através da relação entre as cargas transmitidas pelo pilar e a tensão admissível do solo, conforme equação 10. Em seguida, determinou-se a dimensão dos lados da sapata a partir das equações 12 e 13.

3.4.2 Alturas

Para determinação da altura da sapata levou-se em consideração as recomendações das normas NBR 6118:2014 e NBR 6122:2010, realizando as seguintes análises: solicitações de

punção na peça, definida pelo quadro 05; e pelas equações 22 e 23, sendo que utiliza aquele que apresentar maior valor.

$$h_A \ge \frac{A-a}{3}$$
; (cm)

$$h_B \ge \frac{B-b}{3}$$
; (cm)

Onde:

A é o maior lado da sapata em cm;

B é o menor lado da sapata em cm;

a é a maior dimensão do pilar em cm;

b é a menor dimensão do pilar em cm;

 $L_{anc_{pilar}}$: analisar tabela 03

Quadro 5: Tabela de ancoragem.

	COMPRIMENTO DE ANCORAGEM ℓ_b (cm) PARA $A_{s,ef} = A_{s,calc}$ CA-50 nervurado															
	CO	MPRIN	/IENT	DE A	ANCO	RAGE	M ℓ _b (c	m) PA	RA A _s	$_{,ef} = A_{s}$,calc	CA	A-50 no	ervura	do	
		Concreto														
φ mm	C15		C	20	C	25	C	30	C	35	C	40	C	45	C	50
111111	Sem	Com	Sem	Com	Sem	Com	Sem	Com	Sem	Com	Sem	Com	Sem	Com	Sem	Com
6.2	48	33	39	28	34	24	30	21	27	19	25	17	23	16	21	15
6,3	33	23	28	19	24	17	21	15	19	13	17	12	16	11	15	10
8	61	42	50	35	43	30	38	27	34	24	31	22	29	20	27	19
8	42	30	35	24	30	21	27	19	24	17	22	15	20	14	19	13
10	76	53	62	44	54	38	48	33	43	30	39	28	36	25	34	24
10	53	37	44	31	38	26	33	23	30	21	28	19	25	18	24	17
12,5	95	66	78	55	67	47	60	42	54	38	49	34	45	32	42	30
12,3	66	46	55	38	47	33	42	29	38	26	34	24	32	22	30	21
16	121	85	100	70	86	60	76	53	69	48	63	44	58	41	54	38
10	85	59	70	49	60	42	53	37	48	34	44	31	41	29	38	27
20	151	106	125	87	108	75	95	67	86	60	79	55	73	51	68	47
20	106	74	87	61	75	53	67	47	60	42	55	39	51	36	47	33
22,5	170	119	141	98	121	85	107	75	97	68	89	62	82	57	76	53
22,3	119	83	98	69	85	59	75	53	68	47	62	43	57	40	53	37
25	189	132	156	109	135	94	119	83	108	75	98	69	91	64	85	59
23	132	93	109	76	94	66	83	58	75	53	69	48	64	45	59	42
32	242	169	200	140	172	121	152	107	138	96	126	88	116	81	108	76
32	169	119	140	98	121	84	107	75	96	67	88	62	81	57	76	53
40	303	212	250	175	215	151	191	133	172	120	157	110	145	102	136	95
40	212	148	175	122	151	105	133	93	120	84	110	77	102	71	95	66

Valores de acordo com a NBR 6118/03

Nº Superior: Má Aderência; Nº Inferior: Boa Aderência b lb:

Sem e Com ganchos nas extremidades

 $A_{s,ef}$ = área de armadura efetiva; $A_{s,calc}$ = área de armadura calculada

O comprimento de ancoragem deve ser maior do que o comprimento mínimo:

$$l_{b,min} \ge \begin{cases} 0.3l_b \\ 100 \\ 100mm \end{cases}$$

 $\gamma_{c} = 1,4; \ \gamma_{s} = 1,15$

Fonte: Bastos (2015)

Sendo que o valor encontrado no quadro 05 deve ser acrescido de 5 cm, referente ao cobrimento, afim de determinar a altura total.

3.5 Projeto Estrutural

3.5.1 Previsão de recalque

O recalque da estrutura foi determinado a partir da equação 07, conforme estabelecido por norma NBR 6122:2010 Projeto e execução de fundações, e bibliografia consultada.

3.5.2 Estrutura de concreto armado

3.5.2.1 Cálculo dos momentos fletores

Os esforços atuantes na sapata foram determinados a partir das equações 15 e 16 já apresentadas anteriormente.

3.5.3 Armadura a flexão

Para determinação da área de aço, que combaterá os esforços de flexão que a peça está submetida, utilizou - se a equação 19 para determinar o coeficiente k₆, a equação 20 para determinar a área de aço necessária e os dados do quadro 04, e também foi considerado para o dimensionamento o aço CA-50 que tem tensão de escoamento de 5000 kgf/cm² e concreto com resistência a compressão de 25 MPa. Para os casos em que a taxa de aço encontrada é inferior a taxa mínima determinada pela equação 21, adotou-se o maior valor encontrado.

3.5.4 Determinação da bitola e espaçamento das barras

Para determinar a bitola do aço da sapata, considerou-se o resultado encontrado no cálculo da armadura, representados pelas equações 20 ou 21 e confrontou com a área da barra a ser utilizada, calculado a partir do seu diâmetro. Para determinar a quantidade de barras, basta dividir a área de aço calculada pela área de aço da bitola escolhida, conforme equação 24. O espaçamento entre as barras foi determinado a partir da relação entre o comprimento da sapata perpendicular à direção da barra, considerando a retirada de 05 cm referentes ao cobrimento, representado pelas equações 25 e 26.

$$N_{Barras}^{\circ} = \frac{As_{calculado}}{As_{barra}}$$
; (unidade) Eq. 24

$$Esp._A = \frac{B-2(c)}{N^2_{Barras}}$$
 Eq. 25

$$Esp._B = \frac{A-2(c)}{N^0_{Barras}}$$
 Eq. 26

Onde:

 AS_{barra} é a área da seção do aço em cm²;

A é o maior lado da sapata em cm;

B é o menor lado da sapata em cm;

C é a cobrimento da armadura em cm;

4 RESULTADOS E DISCUSSÕES

4.1 Planta de carga da obra residencial

A planta de carga, apresentada no ANEXO - Figura 20, assim como o projeto estrutural do empreendimento em estudo, foi fornecida pelo engenheiro responsável por sua elaboração. A tabela 01 apresenta um resumo dos esforços solicitantes de cada pilar.

Tabela 1: Resumo planta de carga.

PILAR										
Nome	Seção (cm)	X (cm)	Y (cm)	Carga (tf)						
P01	15 x 30	79.565,45	-14.493,05	4,20						
P02	15 x 30	80.135,45	-14.493,05	6,50						
P03	15 x 30	80.707,95	-14.493,05	6,60						
P04	15 x 30	81.280,40	-14.493,05	6,50						
P05	15 x 30	81.850,40	-14.493,05	4,20						
P06	15 x 30	80.135,45	-14.700,90	6,00						
P07	15 x 30	81.280,40	-14.700,90	6,00						
P08	15 x 30	79.565,45	-14.808,40	6,30						
P09	15 x 30	80.707,93	-14.808,40	10,70						
P10	15 x 30	81.850,40	-14.808,40	6,30						
P11	15 x 30	80.135,45	-14.915,55	9,10						
P12	15 x 30	81.280,40	-14.915,55	9,10						
P13	15 x 30	80.135,45	-15.153,05	8,70						
P14	15 x 30	81.280,40	-15.153,05	8,70						
P15	15 x 30	79.565,45	-15.208,05	3,90						
P16	15 x 30	80.707,93	-15.208,05	6,10						
P17	15 x 30	81.850,40	-15.208,05	3,90						

Fonte: o autor (2016).

4.2 Investigação geotécnica do terreno

As características do solo foram obtidas a partir da investigação geotécnica realizada através dos laudos de sondagem do terreno – SP-01 localizado a 2,65m do fundo e 2,34m da lateral A e SP-02 localizado a 3,48m da frente e 1,16m da lateral B, seguindo as recomendações da NBR 6484:01, apresentadas em ANEXO – Figura 21 e 22. A figura 18 apresenta o esquema de setorização das áreas de influência das sondagens em relação as sapatas existentes no terreno da edificação.

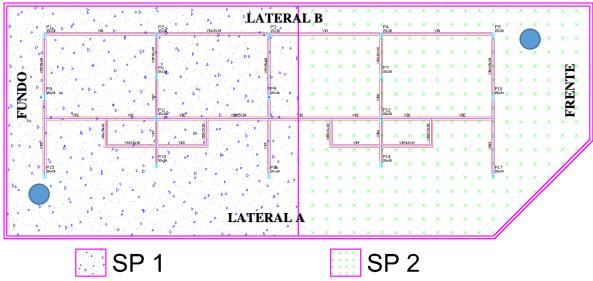


Figura 18: Setorização das áreas de influência das sondagens.

Através da setorização do terreno foi possível determinar quais peças estruturais atuam no solo SP-01 e SP-02. A tabela 02 apresenta a divisão dos pilares em relação aos setores de investigação do solo.

Tabela 2: Divisão das sapatas em relação aos setores de investigação do solo.

SONDAGEM SP-01	SONDAGEM SP-02
P01	P04
P02	P05
P03	P07
P06	P10
P08	P12
P09	P14
P11	P17
P13	-
P15	-
P16	-

Fonte: o autor (2016).

Após a realização do dimensionamento do projeto geotécnico, identificamos que nas sapatas assentadas a -1,5 m de profundidade, o solo com características do laudo de sondagem SP-01 apresenta tensões admissível de 0,10 e 0,12 MPa nas áreas de atuação dos bulbos de tensões provocados pelas peças de fundação, com profundidades a partir da base das sapatas de -2 m e -3 m e N-SPT médio de 5 e 6 golpes. Já o solo com características do laudo SP-02

apresenta tensão admissível de 0,10 MPa nas áreas de atuação dos bulbos de tensões, com profundidades a partir da base da sapata de -2m e N-SPT médio de 5 golpes.

Os valores obtidos com o N-SPT classificam o solo da SP-01 como fofo e pouco compactado, e o solo da SP-02 como fofo, com níveis de água nas cotas -7,50m e -7,00m, respectivamente.

A fundação direta é assentada nas primeiras camadas do solo, não devendo ultrapassar a 2x a menor dimensão do elemento/sapata, e a fundação profunda nas camadas mais profundas do solo, em virtude de a resistência só ser alcançada em camadas de 10m ou mais. Para efeito prático, considera - se técnica e viável economicamente o uso de fundações diretas quando o número de golpes SPT for maior ou igual a 5 e a profundidade de assentamento não ultrapassar -2m.

Neste caso, a utilização de sapata é viável, pois além das características do solo favorecerem o seu uso, a planta de carga da edificação demanda baixos valores de carga, permitindo dimensionar as peças estruturais de forma eficiente, sem colocar em risco o desempenho da estrutura.

4.3 Dimensionamento geotécnico, geométrico e estrutural das estruturas de fundação

Todo o dimensionamento das sapatas foi realizado em planilha eletrônica do Microsoft Excel, conforme apresentada no Apêndice. A planilha é dividida em quatro partes, sendo:

- ✓ Peça estrutural: Contempla as informações relacionadas aos pilares, como dimensão da seção e os respectivos esforços solicitantes que serão transferidos ao solo.
- ✓ Projeto geotécnico: Parte da tabela que apresenta as informações relacionadas à altura de assentamento das sapatas, o número do SPT e tensão admissível do solo.
- ✓ Projeto geométrico: Refere-se dimensões de maior e menor lado, calculadas para a sapata, com suas respectivas áreas e tensões de trabalho.
- ✓ Projeto estrutural: Está última parte, compreende informações relacionadas ao dimensionamento estrutural (Momentos A e B, áreas de aço e ancoragem), detalhamento das armaduras (diâmetro do aço, número de barras e espaçamento) e cálculo do recalque e tensões na peça.

Para a tomada de decisões do dimensionamento, considerou os seguintes dados, os quais o projeto executado foi concebido:

✓ Resistência característica do concreto (fck): 25MPa. Escolhida devido à resistência do concreto exigidas para os pilares no projeto estrutural ser de 20MPa, valor inicial de tomada

decisão, que foi aumentado para 25MPa nas sapatas por está diretamente ligado a determinação dos valores da punção, compressão do concreto e ancoragem do pilar na sapata, características que determinam a altura sapata;

- ✓ Resistência característica do aço (fck): 500MPa (aço CA 50);
- ✓ Maior diâmetro do aço estabelecido para arranque do pilar (lp): 10 mm;
- ✓ Dimensões do pilar: 15x30 cm;
- ✓ Carga do pilar que será transmitida a sapata de acordo com a planta de cargas;
- ✓ N-SPTmédio, extraído da sondagem SPT: Para o solo SP-01: 05 e 06 golpes, para o solo SP-02: 5 golpes;

Para fins demonstrativos, segue o dimensionamento geotécnico, geométrico e estrutural da sapata S09 realizado para o Pilar P09:

• Projeto Geotécnico

Informações do Pilar:

$$S = 15 X 30$$

 $P = 10,7 tf$
 $lpØ = 10 mm$
 $Fck = 25 MPa$

- Para
$$B = 1.0 \text{ m}$$

$$N_{SPT} \ Medio = \frac{4+6+4}{3} = 4,67 = > Adotar \ N_{spt} = 4$$

$$\tau_{adm} = \frac{4}{50} = 0,08 MPa \implies 80 \text{ kPa}$$

• Projeto Geométrico

$$A_{Sap\ 1} = \frac{1.1 \times 107}{80} = 1.47 \, m^2$$

$$A = \frac{0.3 - 0.15}{2} + \sqrt{\frac{(0.3 - 0.15)^2}{4} + 1.47} = 1.29 m$$
 Adotar $A = 1.30 m$

$$B = \frac{1,47}{1,30} = 1,13 \text{ m}$$
 Adotar $B = 1,15 \text{ m}$

 $B_{Calculado} < B_{Adotado} \\$

1,15 > 1,00 => <u>reprovado, pois B calculado é maior que o B adotado, necessário</u> recalcular.

• Projeto Geotécnico

Para
$$B = 1.5 \text{ m}$$

$$N_{SPT} \ Medio = \frac{4+6+4+13}{4} = 6,75 \implies \text{Adotar N}_{spt} = 6$$

$$\tau_{adm} = \frac{6}{50} = 0$$
, 12 *MPa* => 120 kPa

• Projeto Geométrico

$$A_{Sap\ 1} = \frac{1.1\ x\ 107}{120} = \mathbf{0}, 98\ m^2$$

$$A = \frac{0.3 - 0.15}{2} + \sqrt{\frac{(0.3 - 0.15)^2}{4} + 0.98} = 1.07 \text{ m}$$
 Adotar $A = 1.10 \text{ m}$

$$B = \frac{0.98}{1.10} = 0.89 m$$
 Adotar **B** = 0.90 m

$$A_{Sap\ Nova} = 1,10x0,90 = \mathbf{0},\mathbf{99}\ m^2$$

$$B_{Calculado} < B_{Adotado} => 0.9 < 1.5$$
 OK!

• Tensões

$$au_{trabalho} = \frac{1.1x107}{0.99} = \mathbf{118.89} \; KN/m^2$$

$$\tau_{trabalho} < \tau_{limite}$$

• Projeto Estrutural

Recalque

$$W = \frac{1,1\times107}{0,99} \times 0,9^{0,7} \times \frac{1,71}{6^{1,4}} \times \left[\frac{1,25\times\frac{1,10}{0,9}}{0,25+\frac{1,10}{0,9}} \right] = 15,95 \, mm \leq 25 \, mm \, OK!$$

Momento em A e B

$$M_A = \left(\frac{1,1\times10,7}{4}\right) \times \left(\frac{110}{3} - \frac{30}{2}\right) = 63,75 \ tf. \ cm => 0,64 \ tf. \ m$$

$$M_B = \left(\frac{1,1\times10,7}{4}\right) x \left(\frac{90}{3} - \frac{15}{2}\right) = 66,21 \ tf. \ cm => 0,66 \ tf. \ m$$

Alturas (dmin, h e lb)

$$d_{min_A} = 1,768x \sqrt{\frac{1,4x0,64}{\frac{(100x25)x0,3}{1,4}}} = \mathbf{0}, \mathbf{07} \ m => \mathbf{10} \ cm$$

$$d_{min_B} = 1,768x \sqrt{\frac{\frac{1,4x0,66}{(100x25)x0,15}}{\frac{1,4}{4}}} = \mathbf{0}, \mathbf{10} \ m \implies \mathbf{10} \ cm$$

$$hd = 10 + 5 = 15 cm$$

$$ha = \frac{110 - 30}{3} = 26,67 \ cm = > 30 \ cm$$

$$hb = \frac{90 - 15}{3} = 25 cm = 25 cm$$

$$lb = 38 + 5 = 43 cm = > 45 cm$$

$$df = 45 - 5 = 40 cm$$

$$h = 45 cm$$

Tensões

$$\tau_{limite} = \frac{25}{25} = 1 MPa$$

$$\tau_{trabalho} = \frac{1,1x107}{2x(0,30+0,15+2x0,45)x0,45} = 96,87 \frac{KN}{m^2} = > 0,10 MPa$$

$$\tau_{trabalho} < \tau_{limite}$$

0,10 MPa < 1 MPa OK!

K6 e K3

$$K6a = \frac{30 \times 40^2}{63,75} = 752,89 = K3 = 0,325$$
 $ASa = \frac{0,325 \times 63,75}{40} = 0,52 \text{ cm}^2$

$$K6b = \frac{15 \times 40^2}{66,21} = 362,50 = K3 = 0,326$$
 $ASa = \frac{0,326 \times 66,21}{40} = 0,54 \text{ cm}^2$

$$AS_{min} = 0.5\%x (30x15) = 2,25 cm^2$$
 : $Adotar AS_{min} para A e B$

• Detalhamento

Barras do lado A - Adotar Ø 6.3 mm

$$n^{0}$$
 de barras = $\frac{2,25}{0,312}$ = 7,21 \cong 8 unidade Espaçamento = $\frac{90-6}{8}$ = 10 cm

Detalhamento do lado A: 8\,\text{06.3 c}/\,10 cm

Barras do lado B – Adotar Ø 6.3 mm

$$n^{\circ}$$
 de barras = $\frac{2,25}{0,312}$ = 7,21 \cong 8 unidade Espaçamento = $\frac{110-6}{8}$ = 13 cm

Detalhamento do lado B: 8\(\varphi 6.3 c / 13cm\)

Ancoragem

$$l_{ancoragem} sap = 24 cm$$

$$ch_0 = \begin{cases} 20 \ cm \ (OK!) \\ \frac{45}{3} = 15 \ cm \end{cases}$$

$$C_a = \frac{110 - 30}{2} = 40 \text{ cm}$$
 $C_a = \frac{90 - 15}{2} = 37,50 \approx 40 \text{ cm}$

$$L_{anc_{gancho}} = 24 - \{(40 - 5) + (20 - 10)\} = -21 cm$$

4.4 Comparativo entre os projetos

Após a realização do dimensionamento das sapatas com a utilização do laudo de sondagem do terreno, observou-se que as peças apresentaram uma diminuição de suas dimensões, tanto na altura quanto na área de seção, e consequentemente menor peso próprio. No entanto, não houve a necessidade de mudar a cota de assentamento das sapatas, permanecendo igual, tanto para o projeto executado quanto para o projeto proposto, sendo de 1,5m.

Ao compararmos as alturas das sapatas, verificamos que ao utilizar as informações da investigação geotécnica, foi possível dimensionar peças estruturais 10% mais baixas. As sapatas executadas apresentam altura de 50cm, enquanto as que foram dimensionadas utilizando o laudo de sondagem possuem altura de 45cm.

Já na área da seção, as sapatas apresentaram uma redução média de aproximadamente 30% de sua base em comparação com o projeto executado. A tabela 03 apresenta as informações relacionadas as dimensões das sapatas projetadas e das executadas na edificação.

Tabela 3: Comparativos entre as dimensões das sapatas projetadas e executadas.

COMPARATIVO ENTRE DIMENSIONAMENTO										
	I	EXECUTA	DO		PROPOSTO					
SAPATA	A (m)	B (m)	ASAP (m ²)		A (m)	B (m)	ASAP (m ²)			
SP.01	1,05	0,80	0,84		0,80	0,60	0,48			
SP.02	1,10	0,90	0,99		0,95	0,80	0,76			
SP.03	1,10	0,90	0,99		0,95	0,80	0,76			
SP.04	1,10	0,90	0,99		0,95	0,80	0,76			
SP.05	1,05	0,80	0,84		0,80	0,60	0,48			
SP.06	1,10	0,90	0,99		0,90	0,75	0,68			
SP.07	1,10	0,90	0,99		0,90	0,75	0,68			
SP.08	1,10	0,90	0,99		0,95	0,75	0,71			
SP.09	1,20	1,05	1,26		1,10	0,90	0,99			
SP.10	1,10	0,90	0,99		0,90	0,80	0,72			
SP.11	1,20	1,05	1,26		1,00	0,85	0,85			
SP.12	1,20	1,05	1,26		1,10	0,95	1,05			
SP.13	1,15	0,95	1,09		1,00	0,80	0,80			
SP.14	1,15	0,95	1,09		1,10	0,90	0,99			
SP.15	1,15	0,75	0,86		0,75	0,60	0,45			
SP.16	1,10	0,90	0,99		0,90	0,75	0,68			
SP.17	1,15	0,75	0,86		0,75	0,60	0,45			
TOTAL			17,29				12,27			

O dimensionamento proposto apresentou uma redução em todas as peças, conforme demonstrado na tabela 03, a qual apontou um comparativo entre o projeto executado e o proposto. Através dessa exposição, podemos observar a importância em adotar uma investigação geotécnica para elaboração de projetos, evitando-se, dessa forma, a tomada de decisões equivocadas. No caso apresentado houve desperdício de materiais e mão de obra, no entanto, se a situação fosse de sub dimensionamento, poderia ocasionar problemas para a edificação, principalmente nas questões relacionadas à durabilidade e desempenho da estrutura, uma vez que a sapata transfere ao solo os esforços solicitantes através da sua base, necessitando que suas dimensões estejam apropriadas.

4.5 Consumo de material

Para comparativo, foi realizado o levantamento quantitativo do consumo de materiais e volume de escavação entre o projeto executado – sem utilização da investigação geotécnica, e o projeto proposto – desenvolvido com o uso do laudo de sondagem. A tabela 04 apresenta o resumo de materiais consumidos por cada peça estrutural.

Tabela 4: Comparativo de consumo entre projeto executado e projeto proposto.

	COMPARATIVO ENTRE DIMENSIONAMENTO									
	EXECUTADO				PROPOSTO					
SAPATA	Vol. Escavação (m³)	Vol. Concreto (m³)	Aço (kg)		Vol. Escavação (m³)	Vol. Concreto (m³)	Aço (kg)			
SP.01	1,26	0,3	5,06		0,72	0,15	3,77			
SP.02	1,49	0,35	5,36		1,14	0,23	4,46			
SP.03	1,49	0,35	5,36		1,14	0,23	4,46			
SP.04	1,49	0,35	5,36		1,14	0,23	4,46			
SP.05	1,26	0,3	5,06		0,72	0,15	3,73			
SP.06	1,49	0,35	5,36		1,01	0,21	4,27			
SP.07	1,49	0,35	5,36		1,01	0,21	4,27			
SP.08	1,49	0,35	5,36		1,07	0,22	4,36			
SP.09	1,89	0,44	5,85		1,49	0,30	4,96			
SP.10	1,49	0,35	5,36		1,08	0,22	4,36			
SP.11	1,89	0,44	5,85		1,28	0,26	4,66			
SP.12	1,89	0,44	5,85		1,57	0,32	5,06			
SP.13	1,64	0,39	5,56		1,20	0,25	4,56			
SP.14	1,64	0,39	5,56		1,49	0,30	4,96			
SP.15	1,29	0,31	5,16		0,68	0,14	3,67			
SP.16	1,49	0,35	5,36		1,01	0,21	4,27			
SP.17	1,29	0,31	5,16		0,68	0,14	3,64			
TOTAL	25,94	6,13	91,96		18,41	3,79	73,93			

Com a utilização da investigação geotécnica, observamos que houve uma redução no volume de solo escavado e consequentemente nas quantidades de concreto e aço entre o projeto proposto e o projeto executado. O projeto executado escavou 40,9% a mais de solo, além de consumir 61,7% e 24,4% a mais de concreto e aço, respectivamente. A figura 19 mostra o comparativo total do consumo de materiais e escavação entre o projeto executado e o projeto proposto.

Consumo de Materiais 100,00 91,96 90,00 80,00 73,26 70,00 60,00 50,00 40,00 25,94 30,00 18,41 20,00 3.79 10,00 0,00 VOL.ESC. (m³) VOL.CONC. (m³) AÇO (Kg) ■ Projeto Executado ■ Projeto Proposto

Figura 19: Comparativo de consumo de materiais.

Fonte: o autor (2016).

Com base na redução de materiais causada pelo dimensionamento utilizando a investigação geotécnica, foi desenvolvida uma tabela orçamentária alimentada com as informações fornecidas pelo SINAP CAIXA, referente ao mês de agosto de 2016.

Desta forma foi possível comparar o custo necessário para a obtenção de um laudo de sondagem no município de Palmas – TO em relação a economia gerada pela redução do concreto, aço e escavação de terra. As tabelas 05 e 06 apresentam os orçamentos para a realização da sondagem e economia de insumos, respectivamente.

Tabela 5: Orçamento sondagem a percussão SPT.

COD.	DESCRIÇÃO	UND.	QTD.	CUSTO UNT. (R\$)	VALOR UNT. (R\$)
-	TAXA DE MOBILIZAÇÃO (INSTALAÇÃO, TRANSPORTE, DESMOBILIZAÇÃO) ATÉ 50 KM DA SEDE DO PROFISSIONAL	un	1	200,00	200,00
-	SONDAGEM À PERCUSSÃO SPT COM AMOSTRAGEM CONTÍNUA EM TERRA FIRME (POR METRO)	m	12	45,00	540,00
	SONDAGEM À PERCUSSÃO SPT COM AMOSTRAGEM CONTÍNUA EM TERRA FIRME (POR METRO)	m	11	45,00	495,00
				TOTAL	1.235,00

Tabela 6: Orçamento materiais base Sinap Tocantins 08/2016

COD.	DESCRIÇÃO	UND.	QTD.	CUSTO UNT. (R\$)	VALOR UNT. (R\$)
79517/001	ESCAVACAO MANUAL SOLO-PROF. ATE 1,50 M	m³	7,53	21,89	164,83
94965	CONC. FCK = 25MPA, PREP. MEC. C/ BET. 400 L	m³	2,34	333,89	781,30
92873	LANÇAMENTO COM USO DE BALDES, ADENSAMENTO E ACABAMENTO DE CONCRETO ESTRUTURAS.	m³	2,34	116,40	272,38
92916	ARMAÇÃO DE FUNDAÇÕES E ESTRUTURAS DE CONCRETO ARMADO	Kg	18,70	9,38	175,41
\ <u></u>				TOTAL	1.393,92

Fonte: o autor (2016).

Diante dos dados apresentados nas tabelas 5 e 6 podemos verificar que a diferença entre o custo da sondagem e a economia gerada por ela foi de R\$ 152,63, equivalente a 11%. Assim sendo, a utilização da investigação geotecnica torna-se viável, pois permite desenvolver projetos com maior segurança, garantido o melhor desempenho da estrutura, previnindo possíveis problemas que poderão ser causados a edificação devido a instabilidade dos solos e neste caso gerar uma economia no custo da obra.

Ainda pode-se resaltar que mesmo se na comparação dos custos não fosse vantajoso, a investigação geotécnica será relevante. Pois, se compararmos as despesas necessárias para realização de reparos nas peças estruturais de fundação de uma edificação causados por problemas relacionados ao solo e o custo para obtenção de um laudo de sondagem, afim de previnir esses possíveis problemas, o valor pago em uma procedimento o torna viável, visto que reparos em estruturas são onerosos, dispendiosos e geram transtornos as pessoas que utilizam estas edificações.

5 CONCLUSÃO

Neste trabalho, realizou-se um estudo comparativo entre projetos de fundação rasa tipo sapata em uma residência de dois pavimentos de padrão médio, sendo que o projeto executado foi concebido sem a utilização do laudo de sondagem enquanto o projeto proposto foi dimensionado mediante as informações adquiridas pela investigação geotécnica.

Diante dos resultados obtidos, podemos concluir que apesar do alto custo que uma investigação geotécnica agrega as obras residenciais, os benefícios gerados ao adotá-la para a realização do dimensionamento das fundações viabilizam a sua utilização.

Observou-se que o uso laudo de sondagem permitiu a elaboração de um projeto de fundação mais preciso, atendendo de forma segura as demandas da planta de cargas, evitando o desperdicio de materiais e mão-de-obra nas peças que foram superdimensionadas e corrigir aquelas em que as dimensões não atendiam aos tamanhos mínimos para dissipar no solo os esforços solicitantes.

Outro aspecto relevante a ser citado refere-se ao fato de que o custo gerado para obtenção do laudo de sondagem é equivalente a economia gerada pela redução dos materiais.

Desta forma, este estudo mostra que é possível realizar obras residenciais mais seguras, duráveis e que levem conforto para as pessoas sem que isso gere altos custos, em contrapartida, atenta a importância da investigação geotécnica para o desempenho das estruturas.

Considerando os resultados obtidos, como sugestão de continuação deste estudo, indicase realizar avaliação das patologias geradas nas obras residências devido a estrutura de fundação onde não utilizaram investigação geotécnica para concepção do projeto estrutural e realizar a comparação entre custos para a correção destes problemas e realização do laudo de sondagem.

REFERÊNCIAS

ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. <i>NBR 6118</i> , Projeto de estruturas de concreto - Procedimento. Rio de Janeiro, 2014.
NBR 6122, Projeto e execução de fundações. Rio de Janeiro, 2010.
<i>NBR 6484</i> , Solo - Sondagens de simples reconhecimento com SPT - Método de ensaio Rio de Janeiro, 2001.
NBR 6502, Rochas e solos. Rio de Janeiro, 1995.
<i>NBR 8036</i> , Programação de sondagens de simples reconhecimento dos solos para fundações de edifícios - Procedimento. Rio de Janeiro, 1983.
<i>NBR 15575</i> , Edificações habitacionais - Desempenho. Rio de Janeiro, 2013.
ALONSO, Urbano Rodrigues. <i>Exercícios de fundações</i> . São Paulo: Edgard Blucher, 1983.
Previsão e controle das fundações. São Paulo: Edgard Blucher, 1991.
BOTELHO, Manoel Henrique Campos; MARCHETTI, Osvaldemar. <i>Concreto armado, eu te amo. Vol. 1.</i> São Paulo: Edgard Blucher, 2004.
CAPUTO, Homero Pinto. <i>Mecânica dos Solos e Suas Aplicações: fundamentos. Volume 1</i> . 6 ed. Rio de Janeiro: LTC – Livros técnicos e científicos editora, 1987.
<i>Mecânica dos solos e suas aplicações: fundamentos. Vol. 1.</i> 6. ed. Rio de Janeiro: LTC – Livros técnicos e científicos editora, 1988.
CARVALHO, Roberto Chust; PINHEIRO, Libânio Miranda. <i>Cálculo e detalhamento de estruturas usuais de concreto armado. Vol. 2.</i> São Paulo: Pini, 2009.
CINTRA, José Carlos A.; AOKI, Nelson; ALBIERO, José Henrique. Fundações Diretas. Projeto Geotécnico. São Paulo: Oficina de textos. 2011

Tensão Admissível em Fundações Diretas. São Carlos: RiMa, 2003.
Fundações em Solos Calapsíveis. São Carlos: Serviços Gráficos da EESC/USP, 1998.
COSTA, Marco Antônio F da; COSTA, Maria de Fátima Barrozo da. <i>Metodologia da pesquisa</i> , <i>conceitos e técnicas</i> . Rio de Janeiro, Interciência, 2001.
DAS, Braja M. <i>Fundamentos de Engenharia Geotécnica</i> . São Paulo: Thomson Learning, 2007.
Fundamentos de Engenharia Geotécnica. São Paulo: Cengage Learning, 2013.
HACHICH, Waldemar et al., <i>Fundações: teoria e prática</i> . São Paulo, Pini 1996.
Fundações: teoria e prática. 2 ed. São Paulo: Pini, 1998.
MORAES, Marcello da Cunha. <i>Estrutura de Fundações</i> . São Paulo: McGraw-Hill do Brasil, 1976.
PINTO, Carlos de Sousa. <i>Curso Básico de Mecânica dos Solos em 16 Aulas.</i> 3. ed. São Paulo: Oficina de Textos, 2006.
QUARESMA, Arthur Rodrigues. et. al. <i>Investigações geotécnicas. Fundações: Teoria e prática.</i> 2 ed. São Paulo: Pini, 1998.
REBELLO, Yopanan Conrado Pereira. Fundações: Guia prático de projeto, execução e dimensionamento. São Paulo: Zigurate Editora, 2008.
SCHNAID, Fernando. <i>Ensaio de Campo e suas Aplicações na Engenharia de Fundações</i> . São Paulo: Oficina de Textos, 2000.
SIMONS, Noel E; MENZIES, Bruce K. <i>Introdução á engenharia de fundações</i> . Rio de Janeiro: Interciência, 1981.

VARGAS, Mílton; *Introdução à mecânica dos solos*. São Paulo: McGranw-hill do Brasil, Ed.

Da Universidade de São Paulo,1977.

VELLOSO, Dirceu de Alencar; LOPES,	, Francisco de Rezende.	Fundações.	Vol. 1	. 3 ed.	Rio
de Janeiro: COPPE/UFRJ, 2002.		_			

_____. Fundações. Vol. 1. Nova ed. São Paulo: Oficina de Textos, 2004.

ANEXO

Figura 20: Planta de carga do projeto executado.



Figura 21: Laudo de Sondagem SP-01.

Interessado:	RENATO ANTUNES MAGALHÃES	Furo:	SP 01
Obra:	Residencial	Folha:	04
Local obra:	ARSO 62, alameda 07, lote 33, QI 16, Palmas TO	Data do Laudo:	04/06/16

Descriçõ	ões do an	nostrado	r:	Diâmetr	o externo	= 2 1/2"		Peso ba	itente= 6	5 Kg	Diâmetro do Revestimento = 2 1/2"
				Diâmetr	o interno	=1 3/8"		Altura d	a queda	= 75 cm	Diâmetro da Haste = 1"
Profun- didade	Nº da Amostra	N.A. 24 h	1°+2° 15	2°+3° 15	[™] 9° e 2	o penetra			enetração 50	*Consistência / **Compacidade	Descrição do Solo
-1,00	01										Areia média silto-argilosa marrom.
-2,00	02		4	4						fofa**	Areia média silto-argilosa amarela.
-3,00	03		5	6						pouco compacta**	Areia média silto-argilosa vermelha.
-4,00	04		5	4						fofa**	
-5,00	05		11	13	,					mediamente compacta**	
-6,00	06		7	9	$\perp \langle$					mediamente compacta**	
-7,00	7		10	8						pouco compacta**	Areia silto-argilosa vermelha com pedregulho de quartzo.
-8,00	8		11	10		\				mediamente compacta**	Areia grossa silto-argilosa amarela com pedregulho grosso de quartzo.
-9,00	9		12	12						mediamente compacta**	
-10,00	10		15	13						mediamente compacta**	Areia grossa silto-argilosa amarela com pedregulho grosso de quartzo.
-11,00	11		15	19						compacta**	
-11,45	12		23	31			1	\		compacta**	

Nível d'água : 7,50 m	Cota do Furo:	99,92	m
Data do N.A.: 31/05/16	Prof. da sondagem:	11,45	m
	Coordenadas:		
Eng ^o Resp.: Paulo Henrique Cordeiro - Crea TO 80511/D	Equip: GPS12 Garmin		

Fonte: Técnica Engenharia (2016)

Figura 22: Laudo de Sondagem SP-02.

Interessado:	Renato Antunes Magalhães	Furo:	SP 02
Obra:	Residencial	Folha:	05
Local obra:	ARSO 62, alameda 07, lote 33, QI 16, Palmas TO	Data do Laudo:	04/06/16

Descriçõ	ies do an	nostrado	r:	Diâmetr	o externo	= 2 1/2		Peso ba	tente= 6	ī Kg	Diâmetro do Revestimento = 2 1/2"
				Diâmetr	o interno	=1 3/8"		Altura d	a queda	= 75 cm	Diâmetro da Haste = 1"
Profun-	Nº da	N.A.	1°+2°	2°+3°		° penetra			enetração		Descrição
didade	Amostra	24 h	15	15	10	20	30	40	50	**Compacidade	do Solo
-1,00	01										Areia fina silto-arenosa preta com presença de material orgânico.
-2,00	02		4	5						pouco compacta**	Areia fina silto-arenosa amarela.
-3,00	03		4	4						fofa**	Areia fina silto-arenosa vermelha.
-4,00	04		5	6						pouco compacta**	
-5,00	05		6	7						pouco compacta**	
-6,00	06		7	8	į					pouco compacta**	Areia silto-arenosa vermelha com pedregulho de quartzo.
-7,00	7		9	8						pouco compacta**	
-8,00	8		9	11						mediamente compacta**	Areia média silto-argilosa com pedregulho de quartzo amarelado.
-9,00	9		9	9		À				mediamente compacta**	
-10,00	10		11	12						mediamente compacta**	Areia grossa silto-argilosa amarela com pedregulho grosso de quartzo.
-11,00	11		15	17		1/				mediamente compacta**	
-12,00	12		23	32				7		compacta**	
-12,45	13		22	30			1	/		compacta**	

Nível d'água :	7,00 m	Cota do Furo:	99,79	m
Data do N.A.:	31/05/16	Prof. da sondagem:	12,45	m
		Coordenadas:		
Engº Resp.: Paulo I	Henrique Cordeiro - Crea TO 180511/D	Equip: GPS12 Garmin		

Fonte: Técnica Engenharia (2016)

APENDICE

Tabela 7: Dimensões do projeto executado.

Tan	CI	a /.	ווע	HCH	1500	5 5 (ا مد	рго	jen	U C.	xec	uu	เนบ	•							
UAIS		VOL.ESC.	(m ³)	1,26	1,49	1,49	1,49	1,26	1,49	1,49	1,49	1,89	1,49	1,89	1,89	1,64	1,64	1,29	1,49	1,29	25,94
RESUMO DOS MATERIAIS		VOL.CONC.	(m³)	0,30	0,35	0,35	0,35	0,30	0,35	0,35	0,35	0,44	0,35	0,44	0,44	0,39	0,39	0,31	0,35	0,31	6,13
)	AÇO	(\mathbf{Kg})	5,06	5,36	5,36	5,36	5,06	5,36	5,36	5,36	5,85	5,36	5,85	5,85	5,56	5,56	5,16	5,36	5,16	91,96
RE		AÇO	(m)	20,40	21,60	21,60	21,60	20,40	21,60	21,60	21,60	23,60	21,60	23,60	23,60	22,40	22,40	20,80	21,60	20,80	370,80
		ESP.	В	12,0	13,0	13,0	13,0	12,0	13,0	13,0	13,0	14,0	13,0	14,0	14,0	13,0	13,0	13,0	13,0	13,0	
TO)	ESP.	A	9,0	10,0	10,0	10,0	9,0	10,0	10,0	10,0	12,0	10,0	12,0	12,0	11,0	11,0	8,0	10,0	8,0	
DETALHAMENTO		N_{B}^{o}	В	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	AL:
		N_{B}^{o}	¥	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	TOTAL:
DET		1 9	3	6.3	6.3	6.3	6.4	6.5	9.9	6.7	8.9	6.9	6.10	6.11	6.12	6.13	6.14	6.15	6.16	6.17	
		ASmin	(cm ²)	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	
7)	\mathbf{h}_0	(cm)	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	
ALTURAS		Н	(cm)	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	
		HASSENT	(m)	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	
0.	RICO	$A_{SAP} H_{\lambda}$	(m^2)	0,84	66,0	66,0	66'0	0,84	66'0	66'0	66,0	1,26	66,0	1,26	1,26	1,09	1,09	0,86	0,99	0,86	
PROJETO	GEOMETRICO	Я	(m)	0,80	06,0	06,0	06'0	0,80	06,0	06,0	0,00	1,05	0,00	1,05	1,05	0,95	0,95	0,75	0,90	0,75	
PF	GEO	¥	(m)	1,05	1,10	1,10	1,10	1,05	1,10	1,10	1,10	1,20	1,10	1,20	1,20	1,15	1,15	1,15	1,10	1,15	
	RAL	Ь	(KN)	42,0	65,0	66,0	65,0	42,0	60,0	60,0	63,0	107,0	63,0	91,0	91,0	87,0	87,0	39,0	61,0	39,0	
PEÇA	ESTRUTURAL	AMON	MOME	P1 (30x15)	P2 (30x15)	P3 (30x15)	P4 (30x15)	P5 (30x15)	P6 (30x15)	P7 (30x15)	P8 (30x15)	P9 (30x15)	P10 (30x15)	P11 (30x15)	P12 (30x15)	P13 (30x15)	P14 (30x15)	P15 (30x15)	P16 (30x15)	P17 (30x15)	

Tabela 8: Dimensionamento proposto: SP-01.

		DETALHAMENTO	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ESP. A 6,0	A A 6,0 6,0 9,0	A 6,0 9,0 9,0 9,0	A 6,0 6,0 9,0 9,0 8,0	A A 6.0 9.0 9.0 8.0 8.0	A A 6.0 9.0 9.0 9.0 8.0 8.0 10.0	A A A B A B A B A B A B A B A B A B A B	A A B B B B B B B B B B B B B B B B B B	A A 6.00 8.00 8.00 8.00 9.00 9.00 9.00 9.00 9	A
	DIMENSIONAMENTO DE ESTRUTURAL		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 ASMIN LANC. ØL (Cm ²) Ganc. ØL 2.25 0.0 6.3	3 AS _{MIN} L _{ANC} . ØL 6 2 2,25 0,0 6.3 3 2,25 0,0 6.3	ASMIN LANC. ØL (Cm ²) (cm ²) (cm ²) (Ganc. ØL (Cm ²) (Cm ²	ASMIN LANC. ØL (cm.) (cm	ASMIN LANC. ØL 7 (cm²) (ASMIN LANC. ØL (cm.) (cm	ASMIN LANC. ØL (Cm. ³) (cm. ³	ASMIN LANC. QL (cm.) (cm	ASMIN LANC. ØL (cm.) (cm	ASMIN LANC. ØL (cm²) (cm
	DIMENSI	34	m ²) (cm ²)	(cm ²) (cm ²) 0,11 0,12	(cm ²) (cm ²) 0,11 0,12 0,24 0,28	(cm ²) (cm ²) 0,11 0,12 0,24 0,28 0,25 0,28	(cm ²) (cm ²) 0,11 0,12 0,24 0,28 0,25 0,28 0,20 0,23	(cm²)	(cm ²) (0,11 0,12 0,24 0,28 0,25 0,28 0,20 0,23 0,25 0,54 0,55 0,54 0,55 0,54 0,54 0,54 0,5	(cm²)	(cm²)	(cm²)	(cm²)
		$\frac{T_{TRAB}}{(KN/m^2)}$		38,02 0,1			 	 					
	CONCRETO			100,0									
1	URA SAP ATA	H (cm)		45,0									
	UE E	$egin{array}{c c} M_A & M_B \\ (tfcm) & (tfcm) \end{array}$		14,44									
	RECALQUE E MOMENTOS	M _A (tfcm)		13,48				13,48 29,79 30,25 24,75 28,88	13,48 29,79 30,25 24,75 28,88 63,75	13,48 29,79 30,25 24,75 28,88 63,75 45,88	13,48 29,79 30,25 24,75 28,88 63,75 45,88	13,48 29,79 30,25 24,75 28,88 63,75 45,88 43,86	13,48 29,79 30,25 24,75 28,88 63,75 45,88 43,86 10,73 25,16
	REC	W (mm)		12,73	12,73	12,73 14,93 15,16	12,73 14,93 15,16 14,86	12,73 14,93 15,16 14,86 14,91	12,73 14,93 15,16 14,86 14,91 15,95				
	00	Trrab (KN/m²)		96,25							96,25 94,08 95,53 97,78 97,26 118,89 117,76	96,25 94,08 95,53 97,78 97,26 118,89 117,76 119,63	96,25 94,08 95,53 97,78 97,26 118,89 117,76 119,63 95,33
	PROJETO GEOMÉTRICO	A _{SAP} (m ²)		0,48									
	PR GEON	B (m)		0,60									
		(m)		0,80	0,80	0,80	0,80 0,95 0,95 0,90	0,80 0,95 0,95 0,90 0,90	0,80 0,95 0,95 0,90 0,95 1,10	0,80 0,95 0,95 0,90 0,95 1,10 1,00	0,80 0,95 0,95 0,90 0,95 1,10 1,00 1,00	0,80 0,95 0,95 0,90 0,95 1,10 1,00 1,00 1,00	0,80 0,95 0,90 0,90 0,95 1,00 1,00 1,00 0,75 0,75
	VICO	$\begin{array}{c c} N_{SPT} & T_{ADM} \\ \hline m\acute{e}\acute{di}o & (KN/m^2) \end{array}$		100,0	100,0	100,0	100,0 100,0 100,0 100,0	100,0 100,0 100,0 100,0 100,0	100,0 100,0 100,0 100,0 120,0	100,0 100,0 100,0 100,0 120,0 120,0	100,0 100,0 100,0 100,0 120,0 120,0 120,0	100,0 100,0 100,0 100,0 120,0 120,0 120,0 100,0	100,0 100,0 100,0 100,0 120,0 120,0 100,0 100,0
	EOTÉCI	N _{SPT} médio		5	5	5 5	2 2 2	v v v v	2 2 2 2	\$ \$ \$ \$ \$ \$	0 0 0 0 0 0	2 0 0 0 2 2 2	2 2 2 2 2 2 2 2 2
	PROJETO GEOTÉCNICO	ADOT. (m) HASSENT (m) médio		1,5	1,5	1,5	1,5	1,5	1,5 1,5 1,5 1,5 1,5 1,5	1,5 1,5 1,5 1,5 1,5 1,5	1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5
	PRO	B ADOT.	,	1,0	1,0	1,0	1,0	1,0 1,0 1,0 1,0 1,0 1,0					
	RAL	P (KN)		42,0	42,0	42,0 65,0 66,0	42,0 65,0 66,0 60,0	42,0 65,0 66,0 60,0 63,0	42,0 65,0 66,0 60,0 63,0 107,0	42,0 65,0 66,0 60,0 63,0 107,0 91,0	42,0 65,0 66,0 60,0 63,0 107,0 91,0	42,0 65,0 66,0 63,0 107,0 91,0 87,0 39,0	42,0 65,0 66,0 63,0 107,0 91,0 87,0 39,0
	PEÇA ESTRUTURAL	NOME		P1 (30x15)	P1 (30x15) P2 (30x15)	P1 (30x15) P2 (30x15) P3 (30x15)	P1 (30x15) P2 (30x15) P3 (30x15) P6 (30x15)	P1 (30x15) P2 (30x15) P3 (30x15) P6 (30x15) P8 (30x15)	P1 (30x15) 42,0 P2 (30x15) 65,0 P3 (30x15) 66,0 P6 (30x15) 60,0 P8 (30x15) 63,0 P9 (30x15) 107,0	P2 (30x15) 62,0 P2 (30x15) 66,0 P3 (30x15) 66,0 P6 (30x15) 60,0 P8 (30x15) 63,0 P9 (30x15) 107,0 P11 (30x15) 91,0	P1 (30x15) P2 (30x15) P3 (30x15) P6 (30x15) P8 (30x15) P9 (30x15) P11 (30x15) P13 (30x15)	P2 (30x15) 42,0 P2 (30x15) 65,0 P3 (30x15) 66,0 P6 (30x15) 63,0 P8 (30x15) 107,0 P9 (30x15) 107,0 P11 (30x15) 81,0 P13 (30x15) 87,0	P1 (30x15) P2 (30x15) P3 (30x15) P6 (30x15) P8 (30x15) P9 (30x15) P11 (30x15) P15 (30x15) P15 (30x15)

Tabela 9: Dimensionamento proposto: SP-02.

										Ī		PROJETO ESTRUTURAL	ro est	RUTUR	AL						
PROJETO GEOTÉCNICO	ĭ		PROJE	TO GI	ETO GEOMÉTRICO	RICO	REC	RECALQUE E MOMENTOS		ALT URA SAP ATA	TENSÕES NO CONCRETO	TENSÕES NO CONCRETO	DIN	IENS IO ES TRU	DIMENSIONAMENTO ESTRUTURAL	ro		DETA	LHAM	DETALHAMENTO	
$\begin{array}{c c} N_{SPT} & T_{ADM} \\ \\ \text{médio} & (KN/m^2) \end{array}$, ₹ ∑	$ T_{ADM} = A $ $(KN/m^2) = (m) $		B A _{SAP} (m) (m ²)	SAP T.	Trrab (KN/m²) ((m m)	M _A (tfcm)	M _B (tfcm)	H (cm)	$T_{LIM} = (KN/m^2)$	TTRAB (KN/m²)	AS _A (cm ²)	AS _B (cm ²)	$ \begin{array}{c c} AS_{MIN} & L_{ANC} \\ (cm^2) & Ganc. \end{array} \not \hspace{0.5mm} \not \hspace{0.5mm} \not \hspace{0.5mm} \not \hspace{0.5mm} V_B \\ A & B \end{array} $	LANC. Ganc.	ØL	N° _B A		ESP. F	ESP. B
5 100,0	00,00		0,95 0,	92,0 08,0		94,08	14,93	29,79	34,26	45,0	100,00	58,85	0,24	0,28	2,25	0,00	6.3	8	8	0,6	11,0
5 100,0	00,00	$\overline{}$	0,80 0,	0,48		96,25	12,73	13,48	14,43	45,0	100,00	38,02	0,11	0,12	2,25	0,00	8.0	5	5	10,0	14,0
5 100,0	0,00	$\overline{}$	0,90 0,	0,75 0,	6 89'0	97,78	14,86	24,75	28,88	45,0	100,00	54,32	0,20	0,23	2,25	0,00	6.3	8	8	8,0	10,0
5 100,0	0,00	_	0,90 0,	0,80		96,25	15,13	25,99	33,21	45,0	100,00	57,04	0,21	0,27	2,25	0,00	6.3	8	8	9,0	10,0
5 100,0	0,00		1,10 0,	0,95 1,	1,05	95,79	17,07	54,22	60,48	45,0	100,00	82,39	0,44	0,49	2,25	0,00	6.3	8	8	11,0	13,0
5 100,0	00,00		1,10 0,	06,0		196,67	16,74	51,84	53,83	45,0	100,00	78,77	0,42	0,44	2,25	0,00	6.3	8	8	10,0	13,0
5 100,0	0,00	_	0,75 0,	0,60 0,45		95,33	12,48	10,73	13,41	45,0	100,00	35,31	0,09	0,11	2,25	0,00	8.0	5	5	10,0	13,0

-15208.05-14493.05 -14915.55 -14700.90 -14808.40 P17 (S17) 15x30 cm A = 100 cm B = 85 cm S 04.08818 P5 (S5) 15x30 cm A = 80 cm B = 60 cm P10 (S10) 15x30 cm A = 90 cm B = 80 cm P12 (S12) 15x30 cm A = 110 cm B = 95 cm P14 (S14) 15x30 cm A = 100 cm B = 85 cm P7 (S7) 15x30 cm A = 90 cm B = 75 cm P4 (S4) 15x30 cm A = 95 cm B = 80 cm 04.08218 P16 (S16) 15x30 cm A = 100 cm B = 85 cm ന £6.70708 P13 (S13) 15x30 cm A = 100 cm B = 85 cm P6 (S6) 15x30 cm A = 100 cm B = 85 cm \sim 80135.45 24.23267 ⋖ $\mathbf{\omega}$ S Ш

Figura 23: Locação das sapatas do projeto executado.

Figura 24: Projeto de vigas baldrame.

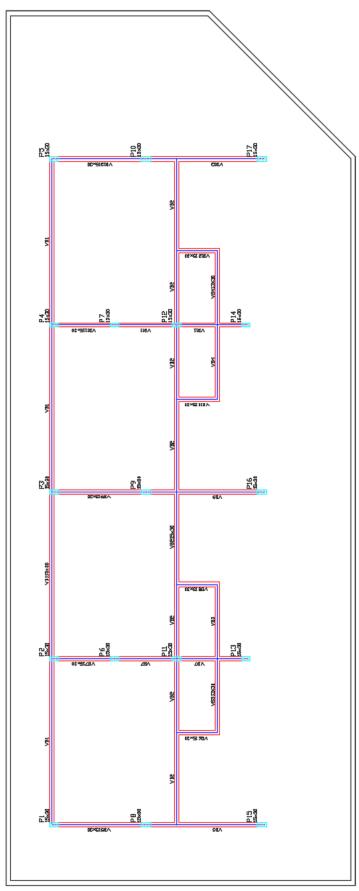


Figura 25: Prancha 01/04 – Detalhamento de sapatas na escala 1:25

Figura 26: Prancha 02/04 – Detalhamento de sapatas na escala 1:25

Figura 27: Prancha 03/04 – Detalhamento de sapatas na escala 1:25

Figura 28: Prancha 04/04 – Locação das sapatas na escala 1:75